These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 17186666)

  • 1. Automated ribotyping for the identification and characterization of foodborne clostridia.
    Kennett CA; Stark B
    J Food Prot; 2006 Dec; 69(12):2970-5. PubMed ID: 17186666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of Salmonella isolates by automated ribotyping.
    Oscar TP
    J Food Prot; 1998 May; 61(5):519-24. PubMed ID: 9709220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribotyping as an identification tool for Clostridium botulinum strains causing human botulism.
    Hielm S; Björkroth J; Hyytiä E; Korkeala H
    Int J Food Microbiol; 1999 Mar; 47(1-2):121-31. PubMed ID: 10357280
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Traditional ribotyping shows a higher discrimination than the automated RiboPrinter system in typing Vibrio cholerae O1.
    Dalsgaard A; Forslund A; Fussing V
    Lett Appl Microbiol; 1999 Apr; 28(4):327-33. PubMed ID: 10212447
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differentiation between types and strains of Clostridium botulinum by riboprinting.
    Skinner GE; Gendel SM; Fingerhut GA; Solomon HA; Ulaszek J
    J Food Prot; 2000 Oct; 63(10):1347-52. PubMed ID: 11041133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Taxonomy of the Clostridia: ribosomal ribonucleic acid homologies among the species.
    Johnson JL; Francis BS
    J Gen Microbiol; 1975 Jun; 88(2):229-44. PubMed ID: 168308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of Clostridium botulinum, Clostridium argentinense, and related organisms by cellular fatty acid analysis.
    Ghanem FM; Ridpath AC; Moore WE; Moore LV
    J Clin Microbiol; 1991 Jun; 29(6):1114-24. PubMed ID: 1864927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribotyping of Clostridium perfringens from industrially produced ground meat.
    Kilic U; Schalch B; Stolle A
    Lett Appl Microbiol; 2002; 34(4):238-43. PubMed ID: 11940151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of Clostridium spp. isolated from spoiled processed cheese products.
    Lycken L; Borch E
    J Food Prot; 2006 Aug; 69(8):1887-91. PubMed ID: 16924914
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinguishing species of the Burkholderia cepacia complex and Burkholderia gladioli by automated ribotyping.
    Brisse S; Verduin CM; Milatovic D; Fluit A; Verhoef J; Laevens S; Vandamme P; Tümmler B; Verbrugh HA; van Belkum A
    J Clin Microbiol; 2000 May; 38(5):1876-84. PubMed ID: 10790116
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic Diversity of Clostridium sporogenes PA 3679 Isolates Obtained from Different Sources as Resolved by Pulsed-Field Gel Electrophoresis and High-Throughput Sequencing.
    Schill KM; Wang Y; Butler RR; Pombert JF; Reddy NR; Skinner GE; Larkin JW
    Appl Environ Microbiol; 2016 Jan; 82(1):384-93. PubMed ID: 26519392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ribotyping for strain characterization of Clostridium perfringens isolates from food poisoning cases and outbreaks.
    Schalch B; Björkroth J; Eisgruber H; Korkeala H; Stolle A
    Appl Environ Microbiol; 1997 Oct; 63(10):3992-4. PubMed ID: 9327563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of emm typing and ribotyping with three restriction enzymes to characterize clinical isolates of Streptococcus pyogenes.
    Doktor SZ; Beyer JM; Flamm RK; Shortridge VD
    J Clin Microbiol; 2005 Jan; 43(1):150-5. PubMed ID: 15634964
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic characteristics of toxigenic Clostridia and toxin gene evolution.
    Popoff MR; Bouvet P
    Toxicon; 2013 Dec; 75():63-89. PubMed ID: 23707611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying and subtyping species of dangerous pathogens by automated ribotyping.
    Grif K; Dierich MP; Much P; Hofer E; Allerberger F
    Diagn Microbiol Infect Dis; 2003 Sep; 47(1):313-20. PubMed ID: 12967744
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Clostridium difficile ribotype 027 for the first time in Mainland China.
    Wang P; Zhou Y; Wang Z; Xie S; Zhang T; Lin M; Li R; Tan J; Chen Y; Jiang B
    Infect Control Hosp Epidemiol; 2014 Jan; 35(1):95-8. PubMed ID: 24334809
    [No Abstract]   [Full Text] [Related]  

  • 17. Ribotyping of Clostridium perfringens isolates.
    Forsblom B; Palmu A; Hirvonen P; Jousimies-Somer H
    Clin Infect Dis; 1995 Jun; 20 Suppl 2():S323-4. PubMed ID: 7548586
    [No Abstract]   [Full Text] [Related]  

  • 18. Clostridium tepidum sp. nov., a close relative of Clostridium sporogenes and Clostridium botulinum Group I.
    Dobritsa AP; Kutumbaka KK; Werner K; Wiedmann M; Asmus A; Samadpour M
    Int J Syst Evol Microbiol; 2017 Jul; 67(7):2317-2322. PubMed ID: 28693684
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia.
    Williamson CH; Sahl JW; Smith TJ; Xie G; Foley BT; Smith LA; Fernández RA; Lindström M; Korkeala H; Keim P; Foster J; Hill K
    BMC Genomics; 2016 Mar; 17():180. PubMed ID: 26939550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of pathogenic clostridia in biogas plant wastes.
    Neuhaus J; Shehata AA; Krüger M
    Folia Microbiol (Praha); 2015 Jan; 60(1):15-9. PubMed ID: 24984829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.