BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

420 related articles for article (PubMed ID: 17186677)

  • 21. Growth Characteristics of Bacillus cereus in Sake and during Its Manufacture.
    Takahashi M; Kita Y; Minakami R; Mukai N
    J Food Prot; 2021 Feb; 84(2):213-219. PubMed ID: 32977335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of chitosan and a low-molecular-weight chitosan on Bacillus cereus and application in the preservation of cooked rice.
    Tsai GJ; Tsai MT; Lee JM; Zhong MZ
    J Food Prot; 2006 Sep; 69(9):2168-75. PubMed ID: 16995520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of Two Application Methods of Plantaricin BM-1 on Control of Listeria monocytogenes and Background Spoilage Bacteria in Sliced Vacuum-Packaged Cooked Ham Stored at 4°C.
    Zhou H; Xie Y; Liu H; Jin J; Duan H; Zhang H
    J Food Prot; 2015 Oct; 78(10):1835-41. PubMed ID: 26408132
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A response surface model to describe the effect of temperature and pH on the growth of Bacillus cereus in cooked rice.
    Heo SK; Lee JY; Baek SB; Ha SD
    J Food Prot; 2009 Jun; 72(6):1296-300. PubMed ID: 19610344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Survival and growth of psychrotrophic Bacillus cereus in dry and reconstituted infant rice cereal.
    Jaquette CB; Beuchat LR
    J Food Prot; 1998 Dec; 61(12):1629-35. PubMed ID: 9874340
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning.
    Gilbert RJ; Stringer MF; Peace TC
    J Hyg (Lond); 1974 Dec; 73(3):433-44. PubMed ID: 4216605
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spore prevalence and toxigenicity of Bacillus cereus and Bacillus thuringiensis isolates from U.S. retail spices.
    Hariram U; Labbé R
    J Food Prot; 2015 Mar; 78(3):590-6. PubMed ID: 25719886
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Predictive model for growth of Bacillus cereus during cooling of cooked rice.
    Juneja VK; Golden CE; Mishra A; Harrison MA; Mohr T; Silverman M
    Int J Food Microbiol; 2019 Feb; 290():49-58. PubMed ID: 30296636
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Presence and growth of Bacillus cereus in dehydrated potato flakes and hot-held, ready-to-eat potato products purchased in New Zealand.
    Turner NJ; Whyte R; Hudson JA; Kaltovei SL
    J Food Prot; 2006 May; 69(5):1173-7. PubMed ID: 16715823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inactivation of foodborne pathogens in ground beef by cooking with highly controlled radio frequency energy.
    Schlisselberg DB; Kler E; Kalily E; Kisluk G; Karniel O; Yaron S
    Int J Food Microbiol; 2013 Jan; 160(3):219-26. PubMed ID: 23290228
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The microbiological quality of cooked rice from restaurants and take-away premises in the United Kingdom.
    Nichols GL; Little CL; Mithani V; de Louvois J
    J Food Prot; 1999 Aug; 62(8):877-82. PubMed ID: 10456740
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Repeated quick hot-and-chilling treatments for the inactivation of Escherichia coli O157:H7 in mung bean and radish seeds.
    Bari ML; Sugiyama J; Kawamoto S
    Foodborne Pathog Dis; 2009; 6(1):137-43. PubMed ID: 19061368
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice.
    Ankolekar C; Rahmati T; Labbé RG
    Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bacillus cereus in refrigerated milk submitted to different heat treatments.
    Aires GS; Walter EH; Junqueira VC; Roig SM; Faria JA
    J Food Prot; 2009 Jun; 72(6):1301-5. PubMed ID: 19610345
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of sample preparation methods for the recovery of foodborne pathogens from fresh produce.
    Kim SR; Yoon Y; Kim WI; Park KH; Yun HJ; Chung DH; Yun JC; Ryu KY
    J Food Prot; 2012 Jul; 75(7):1213-8. PubMed ID: 22980003
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Change of thermal inactivation of Clostridium botulinum spores during rice cooking.
    Konagaya Y; Urakami H; Hoshino J; Kobayashi A; Sasagawa A; Yamazaki A; Kozaki S; Tanaka N
    J Food Prot; 2009 Nov; 72(11):2400-6. PubMed ID: 19903408
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Toxin producing Bacillus cereus persist in ready-to-reheat spaghetti Bolognese mainly in vegetative state.
    Rajkovic A; Kljajic M; Smigic N; Devlieghere F; Uyttendaele M
    Int J Food Microbiol; 2013 Oct; 167(2):236-43. PubMed ID: 24129156
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantitative microbiological exposure assessment model for Bacillus cereus in pasteurized rice cakes using computational fluid dynamics and Monte Carlo simulation.
    Park HW; Yoon WB
    Food Res Int; 2019 Nov; 125():108562. PubMed ID: 31554100
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Superheated steam effectively inactivates diverse microbial targets despite mediating effects from food matrices in bench-scale assessments.
    Rana YS; Chen L; Balasubramaniam VM; Snyder AB
    Int J Food Microbiol; 2022 Oct; 378():109838. PubMed ID: 35863173
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Presence and significance of Bacillus cereus in dehydrated potato products.
    King NJ; Whyte R; Hudson JA
    J Food Prot; 2007 Feb; 70(2):514-20. PubMed ID: 17340893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.