These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

448 related articles for article (PubMed ID: 17187446)

  • 1. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods.
    Yadav A; Calhoun R; Phelan PE; Vuppu AK; Garcia AA; Hayes M
    IEE Proc Nanobiotechnol; 2006 Dec; 153(6):145-50. PubMed ID: 17187446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics.
    Jiang W; Huang J; Wang Y; Laradji M
    J Chem Phys; 2007 Jan; 126(4):044901. PubMed ID: 17286503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissipative particle dynamics simulation of depletion layer and polymer migration in micro- and nanochannels for dilute polymer solutions.
    Fedosov DA; Em Karniadakis G; Caswell B
    J Chem Phys; 2008 Apr; 128(14):144903. PubMed ID: 18412478
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Paramagnetic particles and mixing in micro-scale flows.
    Calhoun R; Yadav A; Phelan P; Vuppu A; Garcia A; Hayes M
    Lab Chip; 2006 Feb; 6(2):247-57. PubMed ID: 16450035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of particle-particle interactions and particles rotational motion in traveling wave dielectrophoresis.
    Aubry N; Singh P
    Electrophoresis; 2006 Feb; 27(3):703-15. PubMed ID: 16400702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient lattice Boltzmann algorithm for Brownian suspensions.
    Mynam M; Sunthar P; Ansumali S
    Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1944):2237-45. PubMed ID: 21536570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study.
    Smiatek J; Sega M; Holm C; Schiller UD; Schmid F
    J Chem Phys; 2009 Jun; 130(24):244702. PubMed ID: 19566169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lattice-Boltzmann simulations of three-dimensional fluid flow on a desktop computer.
    Brewster JD
    Anal Chem; 2007 Apr; 79(7):2965-71. PubMed ID: 17319648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiscale modeling of circular and elliptical particles in laminar shear flow.
    Filipovic N; Isailović V; Dukić T; Ferrari M; Kojic M
    IEEE Trans Biomed Eng; 2012 Jan; 59(1):50-3. PubMed ID: 21878403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Water uptake coefficients and deliquescence of NaCl nanoparticles at atmospheric relative humidities from molecular dynamics simulations.
    Bahadur R; Russell LM
    J Chem Phys; 2008 Sep; 129(9):094508. PubMed ID: 19044878
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Implicit and explicit solvent models for the simulation of a single polymer chain in solution: Lattice Boltzmann versus Brownian dynamics.
    Pham TT; Schiller UD; Prakash JR; Dünweg B
    J Chem Phys; 2009 Oct; 131(16):164114. PubMed ID: 19894934
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Numerical simulation of particle motion in an ultrasound field using the lattice Boltzmann model.
    Cosgrove JA; Buick JM; Campbell DM; Greated CA
    Ultrasonics; 2004 Oct; 43(1):21-5. PubMed ID: 15358525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining molecular dynamics with Lattice Boltzmann: a hybrid method for the simulation of (charged) colloidal systems.
    Chatterji A; Horbach J
    J Chem Phys; 2005 May; 122(18):184903. PubMed ID: 15918761
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brownian dynamics simulation and experimental study of colloidal particle deposition in a microchannel flow.
    Unni HN; Yang C
    J Colloid Interface Sci; 2005 Nov; 291(1):28-36. PubMed ID: 15964576
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CFD analysis of paramagnetic particle containment in microwells.
    Calhoun R; Waskowsky R; Phelan P; Garcia A; Hayes M; Vuppu A
    Lab Chip; 2005 Oct; 5(10):1075-82. PubMed ID: 16175263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient electrophoretic motion of a charged particle through a converging-diverging microchannel: effect of direct current-dielectrophoretic force.
    Ai Y; Joo SW; Jiang Y; Xuan X; Qian S
    Electrophoresis; 2009 Jul; 30(14):2499-506. PubMed ID: 19639572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling microcapsules that communicate through nanoparticles to undergo self-propelled motion.
    Usta OB; Alexeev A; Zhu G; Balazs AC
    ACS Nano; 2008 Mar; 2(3):471-6. PubMed ID: 19206572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape factors in equations of state. Part II. Repulsion phenomena in multicomponent chain fluids.
    Carnahan NF; Müller EA
    Phys Chem Chem Phys; 2006 Jun; 8(22):2619-23. PubMed ID: 16738715
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new perspective on the coarse-grained dynamics of fluids.
    Ayton GS; Tepper HL; Mirijanian DT; Voth GA
    J Chem Phys; 2004 Mar; 120(9):4074-88. PubMed ID: 15268574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo simulations of fluids whose particles interact with a logarithmic potential.
    Heyes DM; Rickayzen G; Powles JG
    J Chem Phys; 2008 Apr; 128(13):134503. PubMed ID: 18397073
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.