BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17187678)

  • 1. On the activity loss of hydrolases in organic solvents: II. a mechanistic study of subtilisin Carlsberg.
    Castillo B; Bansal V; Ganesan A; Halling P; Secundo F; Ferrer A; Griebenow K; Barletta G
    BMC Biotechnol; 2006 Dec; 6():51. PubMed ID: 17187678
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of PEG modification on subtilisin Carlsberg activity, enantioselectivity, and structural dynamics in 1,4-dioxane.
    Castillo B; Solá RJ; Ferrer A; Barletta G; Griebenow K
    Biotechnol Bioeng; 2008 Jan; 99(1):9-17. PubMed ID: 17546684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic catalysis and dynamics in low-water environments.
    Affleck R; Xu ZF; Suzawa V; Focht K; Clark DS; Dordick JS
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):1100-4. PubMed ID: 1310539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of theoretical and experimental data to evaluate substrate diffusional limitations for crown ether- and methyl-beta-cyclodextrin-activated serine protease subtilisin Carlsberg in tetrahydrofuran.
    Santos AM; González M; Pacheco Y; Griebenow K
    Biotechnol Bioeng; 2003 Nov; 84(3):324-31. PubMed ID: 12968286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic solvent binding to crystalline subtilisin1 in mostly aqueous media and in the neat solvents.
    Schmitke JL; Stern LJ; Klibanov AM
    Biochem Biophys Res Commun; 1998 Jul; 248(2):273-7. PubMed ID: 9675126
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydration of enzyme in nonaqueous media is consistent with solvent dependence of its activity.
    Yang L; Dordick JS; Garde S
    Biophys J; 2004 Aug; 87(2):812-21. PubMed ID: 15298890
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme activation in organic solvents: co-lyophilization of subtilisin Carlsberg with methyl-beta-cyclodextrin renders an enzyme catalyst more active than the cross-linked enzyme crystals.
    Montañez-Clemente I; Alvira E; Macias M; Ferrer A; Fonceca M; Rodriguez J; Gonzalez A; Barletta G
    Biotechnol Bioeng; 2002 Apr; 78(1):53-9. PubMed ID: 11857281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low operational stability of enzymes in dry organic solvents: changes in the active site might affect catalysis.
    Bansal V; Delgado Y; Legault M; Barletta G
    Molecules; 2012 Feb; 17(2):1870-82. PubMed ID: 22334065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimizing the salt-induced activation of enzymes in organic solvents: effects of lyophilization time and water content.
    Ru MT; Dordick JS; Reimer JA; Clark DS
    Biotechnol Bioeng; 1999 Apr; 63(2):233-41. PubMed ID: 10099600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active-site motions and polarity enhance catalytic turnover of hydrated subtilisin dissolved in organic solvents.
    Hudson EP; Eppler RK; Beaudoin JM; Dordick JS; Reimer JA; Clark DS
    J Am Chem Soc; 2009 Apr; 131(12):4294-300. PubMed ID: 19317505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen/deuterium exchange study of subtilisin Carlsberg during prolonged exposure to organic solvents.
    Fasoli E; Ferrer A; Barletta GL
    Biotechnol Bioeng; 2009 Mar; 102(4):1025-32. PubMed ID: 18985614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of prolonged exposure to organic solvents on the active site environment of subtilisin Carlsberg.
    Bansal V; Delgado Y; Fasoli E; Ferrer A; Griebenow K; Secundo F; Barletta GL
    J Mol Catal B Enzym; 2010 Jun; 64(1-2):38-44. PubMed ID: 20414456
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A hydrophilic and hydrophobic organic solvent mixture enhances enzyme stability in organic media.
    Choi YS; Yoo YJ
    Biotechnol Lett; 2012 Jun; 34(6):1131-5. PubMed ID: 22361965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of crown ethers on structure, stability, activity, and enantioselectivity of subtilisin Carlsberg in organic solvents.
    Santos AM; Vidal M; Pacheco Y; Frontera J; Báez C; Ornellas O; Barletta G; Griebenow K
    Biotechnol Bioeng; 2001 Aug; 74(4):295-308. PubMed ID: 11410854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The crystal structure of subtilisin Carlsberg in anhydrous dioxane and its comparison with those in water and acetonitrile.
    Schmitke JL; Stern LJ; Klibanov AM
    Proc Natl Acad Sci U S A; 1997 Apr; 94(9):4250-5. PubMed ID: 9113975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activity and mobility of subtilisin in low water organic media: hydration is more important than solvent dielectric.
    Partridge J; Dennison PR; Moore BD; Halling PJ
    Biochim Biophys Acta; 1998 Jul; 1386(1):79-89. PubMed ID: 9675249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzyme engineering for nonaqueous solvents. II. Additive effects of mutations on the stability and activity of subtilisin E in polar organic media.
    Chen KQ; Robinson AC; Van Dam ME; Martinez P; Economou C; Arnold FH
    Biotechnol Prog; 1991; 7(2):125-9. PubMed ID: 1367168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of conformational flexibility of enzymes in the discrimination between amino acid and ester substrates for the subtilisin-catalyzed reaction in organic solvents.
    Watanabe K; Yoshida T; Ueji S
    Bioorg Chem; 2004 Dec; 32(6):504-15. PubMed ID: 15530991
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multinuclear NMR study of enzyme hydration in an organic solvent.
    Lee CS; Ru MT; Haake M; Dordick JS; Reimer JA; Clark DS
    Biotechnol Bioeng; 1998 Mar; 57(6):686-93. PubMed ID: 10099248
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of environmental dynamics at the active site and activity of an enzyme under nanoscopic confinement: Subtilisin Carlsberg in anionic AOT reverse micelle.
    Rakshit S; Saha R; Pal SK
    J Phys Chem B; 2013 Oct; 117(39):11565-74. PubMed ID: 24004033
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.