These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17187783)

  • 41. Characterization of an AP-1-like transcription factor that mediates an oxidative stress response in Kluyveromyces lactis.
    Billard P; Dumond H; Bolotin-Fukuhara M
    Mol Gen Genet; 1997 Dec; 257(1):62-70. PubMed ID: 9439570
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Stabilization of bzip peptides through incorporation of fluorinated aliphatic residues.
    Son S; Tanrikulu IC; Tirrell DA
    Chembiochem; 2006 Aug; 7(8):1251-7. PubMed ID: 16758500
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Regulation of transcription factor latency by receptor-activated proteolysis.
    Andréasson C; Heessen S; Ljungdahl PO
    Genes Dev; 2006 Jun; 20(12):1563-8. PubMed ID: 16778074
    [TBL] [Abstract][Full Text] [Related]  

  • 44. YAP1 over-expression in Saccharomyces cerevisiae enhances glutathione accumulation at its biosynthesis and substrate availability levels.
    Orumets K; Kevvai K; Nisamedtinov I; Tamm T; Paalme T
    Biotechnol J; 2012 Apr; 7(4):566-8. PubMed ID: 22009669
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Oxidative stress function of the Saccharomyces cerevisiae Skn7 receiver domain.
    He XJ; Mulford KE; Fassler JS
    Eukaryot Cell; 2009 May; 8(5):768-78. PubMed ID: 19304952
    [TBL] [Abstract][Full Text] [Related]  

  • 46. NMR spin state exchange spectroscopy reveals equilibrium of two distinct conformations of leucine zipper GCN4 in solution.
    Nikolaev Y; Pervushin K
    J Am Chem Soc; 2007 May; 129(20):6461-9. PubMed ID: 17469817
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Choice of an adequate promoter for efficient complementation in Saccharomyces cerevisiae: a case study.
    Lo Presti L; Cerutti L; Monod M; Hauser PM
    Res Microbiol; 2009; 160(6):380-8. PubMed ID: 19589384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The adaptive response of Saccharomyces cerevisiae to mercury exposure.
    Westwater J; McLaren NF; Dormer UH; Jamieson DJ
    Yeast; 2002 Feb; 19(3):233-9. PubMed ID: 11816031
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An improved genetic system for detection and analysis of protein nuclear import signals.
    Marshall KS; Zhang Z; Curran J; Derbyshire S; Mymryk JS
    BMC Mol Biol; 2007 Jan; 8():6. PubMed ID: 17254328
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of gene transcription by the histone H2A N-terminal domain.
    Parra MA; Wyrick JJ
    Mol Cell Biol; 2007 Nov; 27(21):7641-8. PubMed ID: 17724083
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A genetically encoded probe for cysteine sulfenic acid protein modification in vivo.
    Takanishi CL; Ma LH; Wood MJ
    Biochemistry; 2007 Dec; 46(50):14725-32. PubMed ID: 18020457
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Classical NLS proteins from Saccharomyces cerevisiae.
    Hahn S; Maurer P; Caesar S; Schlenstedt G
    J Mol Biol; 2008 Jun; 379(4):678-94. PubMed ID: 18485366
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Efficacy of antioxidants in the yeast Saccharomyces cerevisiae correlates with their effects on protein thiols.
    Bednarska S; Leroy P; Zagulski M; Bartosz G
    Biochimie; 2008 Oct; 90(10):1476-85. PubMed ID: 18555025
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structure and function of nucleus-vacuole junctions: outer-nuclear-membrane targeting of Nvj1p and a role in tryptophan uptake.
    Kvam E; Goldfarb DS
    J Cell Sci; 2006 Sep; 119(Pt 17):3622-33. PubMed ID: 16912077
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Solution structure of S. cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast.
    Hong J; Zhang J; Liu Z; Qin S; Wu J; Shi Y
    Biochemistry; 2009 Jul; 48(29):6824-34. PubMed ID: 19469552
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting the transcriptional machinery with unique artificial transcriptional activators.
    Wu Z; Belanger G; Brennan BB; Lum JK; Minter AR; Rowe SP; Plachetka A; Majmudar CY; Mapp AK
    J Am Chem Soc; 2003 Oct; 125(41):12390-1. PubMed ID: 14531665
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Vanillin causes the activation of Yap1 and mitochondrial fragmentation in Saccharomyces cerevisiae.
    Nguyen TT; Iwaki A; Ohya Y; Izawa S
    J Biosci Bioeng; 2014 Jan; 117(1):33-8. PubMed ID: 23850265
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Overexpression of YAP2, coding for a new yAP protein, and YAP1 in Saccharomyces cerevisiae alleviates growth inhibition caused by 1,10-phenanthroline.
    Bossier P; Fernandes L; Rocha D; Rodrigues-Pousada C
    J Biol Chem; 1993 Nov; 268(31):23640-5. PubMed ID: 8226890
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of protein phosphorylation with a genetically encoded photocaged amino acid.
    Lemke EA; Summerer D; Geierstanger BH; Brittain SM; Schultz PG
    Nat Chem Biol; 2007 Dec; 3(12):769-72. PubMed ID: 17965709
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Repression of the Low Affinity Iron Transporter Gene FET4: A NOVEL MECHANISM AGAINST CADMIUM TOXICITY ORCHESTRATED BY YAP1 VIA ROX1.
    Caetano SM; Menezes R; Amaral C; Rodrigues-Pousada C; Pimentel C
    J Biol Chem; 2015 Jul; 290(30):18584-95. PubMed ID: 26063801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.