These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 17187832)
41. Could nitrile derivatives of turnip (Brassica rapa) glucosinolates be hepato- or cholangiotoxic in cattle? Collett MG; Stegelmeier BL; Tapper BA J Agric Food Chem; 2014 Jul; 62(30):7370-5. PubMed ID: 24678843 [TBL] [Abstract][Full Text] [Related]
42. Glucosinolate biosynthesis in hairy root cultures of broccoli (Brassica oleracea var. italica). Kim SJ; Park WT; Uddin MR; Kim YB; Nam SY; Jho KH; Park SU Nat Prod Commun; 2013 Feb; 8(2):217-20. PubMed ID: 23513733 [TBL] [Abstract][Full Text] [Related]
43. Functional identification of genes responsible for the biosynthesis of 1-methoxy-indol-3-ylmethyl-glucosinolate in Brassica rapa ssp. chinensis. Wiesner M; Schreiner M; Zrenner R BMC Plant Biol; 2014 May; 14():124. PubMed ID: 24886080 [TBL] [Abstract][Full Text] [Related]
44. Natural Variation of Glucosinolates and Their Breakdown Products in Broccoli ( Wang J; Yu H; Zhao Z; Sheng X; Shen Y; Gu H J Agric Food Chem; 2019 Nov; 67(45):12528-12537. PubMed ID: 31631662 [TBL] [Abstract][Full Text] [Related]
45. SNP diversity within and among Brassica rapa accessions reveals no geographic differentiation. Tanhuanpää P; Erkkilä M; Tenhola-Roininen T; Tanskanen J; Manninen O Genome; 2016 Jan; 59(1):11-21. PubMed ID: 26694015 [TBL] [Abstract][Full Text] [Related]
46. Influence of nitrogen and sulfur on biomass production and carotenoid and glucosinolate concentrations in watercress (Nasturtium officinale R. Br.). Kopsell DA; Barickman TC; Sams CE; McElroy JS J Agric Food Chem; 2007 Dec; 55(26):10628-34. PubMed ID: 18052091 [TBL] [Abstract][Full Text] [Related]
47. Growth temperature affects sensory quality and contents of glucosinolates, vitamin C and sugars in swede roots (Brassica napus L. ssp. rapifera Metzg.). Johansen TJ; Hagen SF; Bengtsson GB; Mølmann JA Food Chem; 2016 Apr; 196():228-35. PubMed ID: 26593487 [TBL] [Abstract][Full Text] [Related]
48. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Howell PM; Sharpe AG; Lydiate DJ Genome; 2003 Jun; 46(3):454-60. PubMed ID: 12834062 [TBL] [Abstract][Full Text] [Related]
49. Variation of glucosinolate accumulation and gene expression of transcription factors at different stages of Chinese cabbage seedlings under light and dark conditions. Kim YB; Chun JH; Kim HR; Kim SJ; Lim YP; Park SU Nat Prod Commun; 2014 Apr; 9(4):533-7. PubMed ID: 24868877 [TBL] [Abstract][Full Text] [Related]
50. Genotypic Variation of Glucosinolates and Their Breakdown Products in Leaves of Brassica rapa. Klopsch R; Witzel K; Artemyeva A; Ruppel S; Hanschen FS J Agric Food Chem; 2018 Jun; 66(22):5481-5490. PubMed ID: 29746112 [TBL] [Abstract][Full Text] [Related]
51. Stir-Frying of Chinese Cabbage and Pakchoi Retains Health-Promoting Glucosinolates. Nugrahedi PY; Oliviero T; Heising JK; Dekker M; Verkerk R Plant Foods Hum Nutr; 2017 Dec; 72(4):439-444. PubMed ID: 29134463 [TBL] [Abstract][Full Text] [Related]
52. Variation of glucosinolates and quinone reductase activity among different varieties of Chinese kale and improvement of glucoraphanin by metabolic engineering. Qian H; Sun B; Miao H; Cai C; Xu C; Wang Q Food Chem; 2015 Feb; 168():321-6. PubMed ID: 25172716 [TBL] [Abstract][Full Text] [Related]
53. Identification of a flavin-monooxygenase as the S-oxygenating enzyme in aliphatic glucosinolate biosynthesis in Arabidopsis. Hansen BG; Kliebenstein DJ; Halkier BA Plant J; 2007 Jun; 50(5):902-10. PubMed ID: 17461789 [TBL] [Abstract][Full Text] [Related]
54. New vegetable varieties of Coves S; Soengas P; Velasco P; Fernández JC; Cartea ME Front Nutr; 2023; 10():1198121. PubMed ID: 37521419 [TBL] [Abstract][Full Text] [Related]
55. Extraction and determination of glucosinolates from soil. Gimsing AL; Kirkegaard JA; Bruun Hansen HC J Agric Food Chem; 2005 Dec; 53(25):9663-7. PubMed ID: 16332113 [TBL] [Abstract][Full Text] [Related]
56. Genetic and molecular approaches to improve nutritional value of Brassica napus L. seed. Nesi N; Delourme R; Brégeon M; Falentin C; Renard M C R Biol; 2008 Oct; 331(10):763-71. PubMed ID: 18926490 [TBL] [Abstract][Full Text] [Related]
57. Role of Glucosinolates in the Nutraceutical Potential of Selected Cultivars of Merinas-Amo T; Lozano-Baena MD; Obregón-Cano S; Alonso-Moraga Á; de Haro-Bailón A Foods; 2021 Nov; 10(11):. PubMed ID: 34829001 [No Abstract] [Full Text] [Related]
58. Glucosinolate variability between turnip organs during development. Bonnema G; Lee JG; Shuhang W; Lagarrigue D; Bucher J; Wehrens R; de Vos R; Beekwilder J PLoS One; 2019; 14(6):e0217862. PubMed ID: 31170222 [TBL] [Abstract][Full Text] [Related]
59. Homoeologous GSL-ELONG gene replacement for manipulation of aliphatic glucosinolates in Brassica rapa L. by marker assisted selection. Hirani AH; Zelmer CD; McVetty PB; Daayf F; Li G Front Plant Sci; 2013; 4():55. PubMed ID: 23532458 [TBL] [Abstract][Full Text] [Related]
60. Suppressive effect of Yamato-mana (Brassica rapa L. Oleifera Group) constituent 3-butenyl glucosinolate (gluconapin) on postprandial hypertriglyceridemia in mice. Washida K; Miyata M; Koyama T; Yazawa K; Nomoto K Biosci Biotechnol Biochem; 2010; 74(6):1286-9. PubMed ID: 20530888 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]