These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
413 related articles for article (PubMed ID: 17187832)
61. Glucosinolate Content and Sensory Evaluation of Baby Leaf Rapeseed from Annual and Biennial White- and Yellow-Flowering Cultivars with Repeated Harvesting in Two Seasons. Groenbaek M; Kidmose U; Tybirk E; Kristensen HL J Food Sci; 2019 Jul; 84(7):1888-1899. PubMed ID: 31237979 [TBL] [Abstract][Full Text] [Related]
62. Effect of microwave treatment on the efficacy of expeller pressing of Brassica napus rapeseed and Brassica juncea mustard seeds. Niu Y; Rogiewicz A; Wan C; Guo M; Huang F; Slominski BA J Agric Food Chem; 2015 Apr; 63(12):3078-84. PubMed ID: 25765856 [TBL] [Abstract][Full Text] [Related]
63. Interaction between plants and bacteria: glucosinolates and phyllospheric colonization of cruciferous vegetables by Enterobacter radicincitans DSM 16656. Schreiner M; Krumbein A; Ruppel S J Mol Microbiol Biotechnol; 2009; 17(3):124-35. PubMed ID: 19556746 [TBL] [Abstract][Full Text] [Related]
64. Behavior of glucosinolates in pickling cruciferous vegetables. Suzuki C; Ohnishi-Kameyama M; Sasaki K; Murata T; Yoshida M J Agric Food Chem; 2006 Dec; 54(25):9430-6. PubMed ID: 17147429 [TBL] [Abstract][Full Text] [Related]
65. Identification and quantification of glucosinolates in sprouts derived from seeds of wild Eruca sativa L. (salad rocket) and Diplotaxis tenuifolia L. (wild rocket) from diverse geographical locations. Bennett RN; Carvalho R; Mellon FA; Eagles J; Rosa EA J Agric Food Chem; 2007 Jan; 55(1):67-74. PubMed ID: 17199315 [TBL] [Abstract][Full Text] [Related]
66. Production of partial new-typed Brassica napus by introgression of genomic components from B. rapa and B. carinata. Li M; Liu J; Wang Y; Yu L; Meng J J Genet Genomics; 2007 May; 34(5):460-8. PubMed ID: 17560532 [TBL] [Abstract][Full Text] [Related]
67. In vivo and in vitro effects of secondary metabolites against Xanthomonas campestris pv. campestris. Velasco P; Lema M; Francisco M; Soengas P; Cartea ME Molecules; 2013 Sep; 18(9):11131-43. PubMed ID: 24029746 [TBL] [Abstract][Full Text] [Related]
68. Quantification and Diversity Analyses of Major Glucosinolates in Conserved Chinese Cabbage ( Kim SH; Lee GA; Subramanian P; Hahn BS Foods; 2023 Mar; 12(6):. PubMed ID: 36981169 [TBL] [Abstract][Full Text] [Related]
69. A naturally occurring variation in the Zhang J; Wang H; Liu Z; Liang J; Wu J; Cheng F; Mei S; Wang X Hortic Res; 2018; 5():69. PubMed ID: 30534387 [TBL] [Abstract][Full Text] [Related]
70. Metabolic profiling of glucosinolates and their hydrolysis products in a germplasm collection of Brassica rapa turnips. Klopsch R; Witzel K; Börner A; Schreiner M; Hanschen FS Food Res Int; 2017 Oct; 100(Pt 3):392-403. PubMed ID: 28964362 [TBL] [Abstract][Full Text] [Related]
71. Intra-specific differences in root and shoot glucosinolate profiles among white cabbage (Brassica oleracea var. capitata) cultivars. Kabouw P; Biere A; van der Putten WH; van Dam NM J Agric Food Chem; 2010 Jan; 58(1):411-7. PubMed ID: 19958020 [TBL] [Abstract][Full Text] [Related]
72. Regulatory network of secondary metabolism in Brassica rapa: insight into the glucosinolate pathway. Pino Del Carpio D; Basnet RK; Arends D; Lin K; De Vos RC; Muth D; Kodde J; Boutilier K; Bucher J; Wang X; Jansen R; Bonnema G PLoS One; 2014; 9(9):e107123. PubMed ID: 25222144 [TBL] [Abstract][Full Text] [Related]
73. Brassicaceae tissues as inhibitors of nitrification in soil. Brown PD; Morra MJ J Agric Food Chem; 2009 Sep; 57(17):7706-11. PubMed ID: 19722704 [TBL] [Abstract][Full Text] [Related]
74. Reduced glucosinolate content in oilseed rape (Brassica napus L.) by random mutagenesis of BnMYB28 and BnCYP79F1 genes. Jhingan S; Harloff HJ; Abbadi A; Welsch C; Blümel M; Tasdemir D; Jung C Sci Rep; 2023 Feb; 13(1):2344. PubMed ID: 36759657 [TBL] [Abstract][Full Text] [Related]
75. Influence of silver nanoparticles on the enhancement and transcriptional changes of glucosinolates and phenolic compounds in genetically transformed root cultures of Brassica rapa ssp. rapa. Chung IM; Rekha K; Rajakumar G; Thiruvengadam M Bioprocess Biosyst Eng; 2018 Nov; 41(11):1665-1677. PubMed ID: 30056602 [TBL] [Abstract][Full Text] [Related]
76. Three genes encoding AOP2, a protein involved in aliphatic glucosinolate biosynthesis, are differentially expressed in Brassica rapa. Zhang J; Liu Z; Liang J; Wu J; Cheng F; Wang X J Exp Bot; 2015 Oct; 66(20):6205-18. PubMed ID: 26188204 [TBL] [Abstract][Full Text] [Related]
77. Class targeted metabolomics: ESI ion trap screening methods for glucosinolates based on MSn fragmentation. Rochfort SJ; Trenerry VC; Imsic M; Panozzo J; Jones R Phytochemistry; 2008 May; 69(8):1671-9. PubMed ID: 18396302 [TBL] [Abstract][Full Text] [Related]
78. Quantitative trait loci analysis of non-enzymatic glucosinolate degradation rates in Brassica oleracea during food processing. Hennig K; Verkerk R; Dekker M; Bonnema G Theor Appl Genet; 2013 Sep; 126(9):2323-34. PubMed ID: 23748744 [TBL] [Abstract][Full Text] [Related]
79. Molecular characterization of glucosinolates and carotenoid biosynthetic genes in Chinese cabbage ( Chun JH; Kim NH; Seo MS; Jin M; Park SU; Arasu MV; Kim SJ; Al-Dhabi NA Saudi J Biol Sci; 2018 Jan; 25(1):71-82. PubMed ID: 29379360 [TBL] [Abstract][Full Text] [Related]
80. Genome-Wide Association Study of Glucosinolate Metabolites (mGWAS) in Tang Y; Zhang G; Jiang X; Shen S; Guan M; Tang Y; Sun F; Hu R; Chen S; Zhao H; Li J; Lu K; Yin N; Qu C Plants (Basel); 2023 Feb; 12(3):. PubMed ID: 36771722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]