BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 17187885)

  • 1. A novel approach for the improvement of stress resistance in wine yeasts.
    Cardona F; Carrasco P; Pérez-Ortín JE; del Olmo Ml; Aranda A
    Int J Food Microbiol; 2007 Feb; 114(1):83-91. PubMed ID: 17187885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions.
    Jiménez-Martí E; Zuzuarregui A; Ridaura I; Lozano N; del Olmo M
    Int J Food Microbiol; 2009 Mar; 130(2):122-30. PubMed ID: 19217680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of wine yeast gene expression profiles under winemaking conditions.
    Varela C; Cárdenas J; Melo F; Agosin E
    Yeast; 2005 Apr; 22(5):369-83. PubMed ID: 15806604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of the expression of some stress induced genes in several commercial wine yeast strains at the beginning of vinification.
    Zuzuarregui A; Carrasco P; Palacios A; Julien A; del Olmo M
    J Appl Microbiol; 2005; 98(2):299-307. PubMed ID: 15659184
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stress response and expression patterns in wine fermentations of yeast genes induced at the diauxic shift.
    Puig S; Pérez-Ortín JE
    Yeast; 2000 Jan; 16(2):139-48. PubMed ID: 10641036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of transcriptomic and metabolic analyses for understanding the global responses of low-temperature winemaking fermentations.
    Beltran G; Novo M; Leberre V; Sokol S; Labourdette D; Guillamon JM; Mas A; François J; Rozes N
    FEMS Yeast Res; 2006 Dec; 6(8):1167-83. PubMed ID: 17156014
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elevated expression of genes under the control of stress response element (STRE) and Msn2p in an ethanol-tolerance sake yeast Kyokai no. 11.
    Watanabe M; Tamura K; Magbanua JP; Takano K; Kitamoto K; Kitagaki H; Akao T; Shimoi H
    J Biosci Bioeng; 2007 Sep; 104(3):163-70. PubMed ID: 17964478
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making.
    Pérez-Torrado R; Bruno-Bárcena JM; Matallana E
    Appl Environ Microbiol; 2005 Nov; 71(11):6831-7. PubMed ID: 16269716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation.
    Rossignol T; Dulau L; Julien A; Blondin B
    Yeast; 2003 Dec; 20(16):1369-85. PubMed ID: 14663829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response to acetaldehyde stress in the yeast Saccharomyces cerevisiae involves a strain-dependent regulation of several ALD genes and is mediated by the general stress response pathway.
    Aranda A; del Olmo Ml Ml
    Yeast; 2003 Jun; 20(8):747-59. PubMed ID: 12794936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of stress response genes in wine strains with different fermentative behavior.
    Zuzuarregui A; del Olmo ML
    FEMS Yeast Res; 2004 May; 4(7):699-710. PubMed ID: 15093773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative stress responses and lipid peroxidation damage are induced during dehydration in the production of dry active wine yeasts.
    Garre E; Raginel F; Palacios A; Julien A; Matallana E
    Int J Food Microbiol; 2010 Jan; 136(3):295-303. PubMed ID: 19914726
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analyses of stress resistance under laboratory conditions constitute a suitable criterion for wine yeast selection.
    Zuzuarregui A; del Olmo M
    Antonie Van Leeuwenhoek; 2004 May; 85(4):271-80. PubMed ID: 15028866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth.
    Pérez-Torrado R; Gómez-Pastor R; Larsson C; Matallana E
    Appl Microbiol Biotechnol; 2009 Jan; 81(5):951-60. PubMed ID: 18836715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of polysaccharide-degrading wine yeast transformants on the efficiency of wine processing and wine flavour.
    Louw C; La Grange D; Pretorius IS; van Rensburg P
    J Biotechnol; 2006 Oct; 125(4):447-61. PubMed ID: 16644051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering of an oenological Saccharomyces cerevisiae strain with pectinolytic activity and its effect on wine.
    Fernández-González M; Ubeda JF; Cordero-Otero RR; Thanvanthri Gururajan V; Briones AI
    Int J Food Microbiol; 2005 Jul; 102(2):173-83. PubMed ID: 15992616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genetic improvement of thermo-tolerance in wine Saccharomyces cerevisiae strains by a backcross approach.
    Marullo P; Mansour C; Dufour M; Albertin W; Sicard D; Bely M; Dubourdieu D
    FEMS Yeast Res; 2009 Dec; 9(8):1148-60. PubMed ID: 19758333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stationary-phase gene expression in Saccharomyces cerevisiae during wine fermentation.
    Riou C; Nicaud JM; Barre P; Gaillardin C
    Yeast; 1997 Aug; 13(10):903-15. PubMed ID: 9271106
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The heterologous expression of polysaccharidase-encoding genes with oenological relevance in Saccharomyces cerevisiae.
    van Rensburg P; Strauss ML; Lambrechts MG; Cordero Otero RR; Pretorius IS
    J Appl Microbiol; 2007 Dec; 103(6):2248-57. PubMed ID: 18045408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of GAP1 gene in the nitrogen metabolism of Saccharomyces cerevisiae during wine fermentation.
    Chiva R; Baiges I; Mas A; Guillamon JM
    J Appl Microbiol; 2009 Jul; 107(1):235-44. PubMed ID: 19302302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.