BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 17188036)

  • 1. A DEAD protein that activates intron self-splicing without unwinding RNA.
    Solem A; Zingler N; Pyle AM
    Mol Cell; 2006 Nov; 24(4):611-7. PubMed ID: 17188036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein-facilitated ribozyme folding and catalysis.
    Zingler N; Solem A; Pyle AM
    Nucleic Acids Symp Ser (Oxf); 2008; (52):67-8. PubMed ID: 18776256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual roles for the Mss116 cofactor during splicing of the ai5γ group II intron.
    Zingler N; Solem A; Pyle AM
    Nucleic Acids Res; 2010 Oct; 38(19):6602-9. PubMed ID: 20554854
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Overexpression of DEAD box protein pMSS116 promotes ATP-dependent splicing of a yeast group II intron in vitro.
    Niemer I; Schmelzer C; Börner GV
    Nucleic Acids Res; 1995 Aug; 23(15):2966-72. PubMed ID: 7659519
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of unique interactions between the flexible linker and the RecA-like domains of DEAD-box helicase Mss116.
    Zhang Y; Palla M; Sun A; Liao JC
    J Phys Condens Matter; 2013 Sep; 25(37):374101. PubMed ID: 23945169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones.
    Del Campo M; Mohr S; Jiang Y; Jia H; Jankowsky E; Lambowitz AM
    J Mol Biol; 2009 Jun; 389(4):674-93. PubMed ID: 19393667
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial splicing requires a protein from a novel helicase family.
    Séraphin B; Simon M; Boulet A; Faye G
    Nature; 1989 Jan; 337(6202):84-7. PubMed ID: 2535893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The brace for a growing scaffold: Mss116 protein promotes RNA folding by stabilizing an early assembly intermediate.
    Fedorova O; Pyle AM
    J Mol Biol; 2012 Sep; 422(3):347-65. PubMed ID: 22705286
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and -independent mechanisms, and general RNA chaperone activity.
    Halls C; Mohr S; Del Campo M; Yang Q; Jankowsky E; Lambowitz AM
    J Mol Biol; 2007 Jan; 365(3):835-55. PubMed ID: 17081564
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GAPDH enhances group II intron splicing in vitro.
    Böck-Taferner P; Wank H
    Biol Chem; 2004 Jul; 385(7):615-21. PubMed ID: 15318810
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do DEAD-box proteins promote group II intron splicing without unwinding RNA?
    Del Campo M; Tijerina P; Bhaskaran H; Mohr S; Yang Q; Jankowsky E; Russell R; Lambowitz AM
    Mol Cell; 2007 Oct; 28(1):159-66. PubMed ID: 17936712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-guided mutational analysis of a yeast DEAD-box protein involved in mitochondrial RNA splicing.
    Bifano AL; Turk EM; Caprara MG
    J Mol Biol; 2010 May; 398(3):429-43. PubMed ID: 20307546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The maturase encoded by a group I intron from Aspergillus nidulans stabilizes RNA tertiary structure and promotes rapid splicing.
    Ho Y; Waring RB
    J Mol Biol; 1999 Oct; 292(5):987-1001. PubMed ID: 10512698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-dependent roles of the DEAD-box protein Mss116p in group II intron splicing in vitro and in vivo.
    Potratz JP; Del Campo M; Wolf RZ; Lambowitz AM; Russell R
    J Mol Biol; 2011 Aug; 411(3):661-79. PubMed ID: 21679717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Mss116 ATPase reveals functional diversity of DEAD-Box proteins.
    Cao W; Coman MM; Ding S; Henn A; Middleton ER; Bradley MJ; Rhoades E; Hackney DD; Pyle AM; De La Cruz EM
    J Mol Biol; 2011 Jun; 409(3):399-414. PubMed ID: 21501623
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The DEAD-box RNA helicase, Dhh1, functions in mating by regulating Ste12 translation in Saccharomyces cerevisiae.
    Ka M; Park YU; Kim J
    Biochem Biophys Res Commun; 2008 Mar; 367(3):680-6. PubMed ID: 18182159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-molecule analysis of Mss116-mediated group II intron folding.
    Karunatilaka KS; Solem A; Pyle AM; Rueda D
    Nature; 2010 Oct; 467(7318):935-9. PubMed ID: 20944626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemogenetic approach to study the structural basis of protein-facilitated RNA folding.
    Fedorova O
    Methods Mol Biol; 2014; 1086():177-91. PubMed ID: 24136604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A DEAD-box protein alone promotes group II intron splicing and reverse splicing by acting as an RNA chaperone.
    Mohr S; Matsuura M; Perlman PS; Lambowitz AM
    Proc Natl Acad Sci U S A; 2006 Mar; 103(10):3569-74. PubMed ID: 16505350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.