BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

282 related articles for article (PubMed ID: 17188513)

  • 1. Carbohydrate binding properties and carbohydrate induced conformational switch in sheep secretory glycoprotein (SPS-40): crystal structures of four complexes of SPS-40 with chitin-like oligosaccharides.
    Srivastava DB; Ethayathulla AS; Kumar J; Somvanshi RK; Sharma S; Dey S; Singh TP
    J Struct Biol; 2007 Jun; 158(3):255-66. PubMed ID: 17188513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of a secretory signalling glycoprotein from sheep at 2.0A resolution.
    Srivastava DB; Ethayathulla AS; Kumar J; Singh N; Sharma S; Das U; Srinivasan A; Singh TP
    J Struct Biol; 2006 Dec; 156(3):505-16. PubMed ID: 16859926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbohydrate-binding properties of goat secretory glycoprotein (SPG-40) and its functional implications: structures of the native glycoprotein and its four complexes with chitin-like oligosaccharides.
    Kumar J; Ethayathulla AS; Srivastava DB; Singh N; Sharma S; Kaur P; Srinivasan A; Singh TP
    Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):437-46. PubMed ID: 17372347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure of a bovine secretory signalling glycoprotein (SPC-40) at 2.1 Angstrom resolution.
    Kumar J; Ethayathulla AS; Srivastava DB; Sharma S; Singh SB; Srinivasan A; Yadav MP; Singh TP
    Acta Crystallogr D Biol Crystallogr; 2006 Sep; 62(Pt 9):953-63. PubMed ID: 16929095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tryptophan as a three-way switch in regulating the function of the secretory signalling glycoprotein (SPS-40) from mammary glands: structure of SPS-40 complexed with 2-methylpentane-2,4-diol at 1.6 A resolution.
    Sharma P; Singh N; Sinha M; Sharma S; Perbandt M; Betzel C; Kaur P; Srinivasan A; Singh TP
    Acta Crystallogr D Biol Crystallogr; 2009 Apr; 65(Pt 4):375-8. PubMed ID: 19307719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The molecular mechanism of sulfated carbohydrate recognition by the cysteine-rich domain of mannose receptor.
    Liu Y; Misulovin Z; Bjorkman PJ
    J Mol Biol; 2001 Jan; 305(3):481-90. PubMed ID: 11152606
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR and modeling studies of protein-carbohydrate interactions: synthesis, three-dimensional structure, and recognition properties of a minimum hevein domain with binding affinity for chitooligosaccharides.
    Aboitiz N; Vila-Perelló M; Groves P; Asensio JL; Andreu D; Cañada FJ; Jiménez-Barbero J
    Chembiochem; 2004 Sep; 5(9):1245-55. PubMed ID: 15368576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1H nuclear magnetic resonance studies of hen lysozyme-N-acetylglucosamine oligosaccharide complexes in solution. Application of chemical shifts for the comparison of conformational changes in solution and in the crystal.
    Lumb KJ; Cheetham JC; Dobson CM
    J Mol Biol; 1994 Jan; 235(3):1072-87. PubMed ID: 8289309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insight into host cell carbohydrate-recognition by human and porcine rotavirus from crystal structures of the virion spike associated carbohydrate-binding domain (VP8*).
    Blanchard H; Yu X; Coulson BS; von Itzstein M
    J Mol Biol; 2007 Apr; 367(4):1215-26. PubMed ID: 17306299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of Bacillus subtilis PdaA, a family 4 carbohydrate esterase, and a complex with N-acetyl-glucosamine.
    Blair DE; van Aalten DM
    FEBS Lett; 2004 Jul; 570(1-3):13-9. PubMed ID: 15251431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural basis for the energetics of jacalin-sugar interactions: promiscuity versus specificity.
    Arockia Jeyaprakash A; Jayashree G; Mahanta SK; Swaminathan CP; Sekar K; Surolia A; Vijayan M
    J Mol Biol; 2005 Mar; 347(1):181-8. PubMed ID: 15733927
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure, dynamics, and interactions of jacalin. Insights from molecular dynamics simulations examined in conjunction with results of X-ray studies.
    Sharma A; Sekar K; Vijayan M
    Proteins; 2009 Dec; 77(4):760-77. PubMed ID: 19544573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. X-ray crystallographic studies of unique cross-linked lattices between four isomeric biantennary oligosaccharides and soybean agglutinin.
    Olsen LR; Dessen A; Gupta D; Sabesan S; Sacchettini JC; Brewer CF
    Biochemistry; 1997 Dec; 36(49):15073-80. PubMed ID: 9398234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach.
    Viegas A; Brás NF; Cerqueira NM; Fernandes PA; Prates JA; Fontes CM; Bruix M; Romão MJ; Carvalho AL; Ramos MJ; Macedo AL; Cabrita EJ
    FEBS J; 2008 May; 275(10):2524-35. PubMed ID: 18422658
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Binding sub-site dissection of a carbohydrate-binding module reveals the contribution of entropy to oligosaccharide recognition at "non-primary" binding subsites.
    Lammerts van Bueren A; Boraston AB
    J Mol Biol; 2004 Jul; 340(4):869-79. PubMed ID: 15223327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the importance of carbohydrate-aromatic interactions for the molecular recognition of oligosaccharides by proteins: NMR studies of the structure and binding affinity of AcAMP2-like peptides with non-natural naphthyl and fluoroaromatic residues.
    Chávez MI; Andreu C; Vidal P; Aboitiz N; Freire F; Groves P; Asensio JL; Asensio G; Muraki M; Cañada FJ; Jiménez-Barbero J
    Chemistry; 2005 Nov; 11(23):7060-74. PubMed ID: 16220560
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intramolecular carbohydrate-aromatic interactions and intermolecular van der Waals interactions enhance the molecular recognition ability of GM1 glycomimetics for cholera toxin.
    Bernardi A; Arosio D; Potenza D; Sánchez-Medina I; Mari S; Cañada FJ; Jiménez-Barbero J
    Chemistry; 2004 Sep; 10(18):4395. PubMed ID: 15378617
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural studies on the binding of 4-methylumbelliferone glycosides of chitin to rainbow trout lysozyme.
    Vollan VB; Hough E; Karlsen S
    Acta Crystallogr D Biol Crystallogr; 1999 Jan; 55(Pt 1):60-6. PubMed ID: 10089395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immobilization and clustering of structurally defined oligosaccharides for sugar chips: an improved method for surface plasmon resonance analysis of protein-carbohydrate interactions.
    Suda Y; Arano A; Fukui Y; Koshida S; Wakao M; Nishimura T; Kusumoto S; Sobel M
    Bioconjug Chem; 2006; 17(5):1125-35. PubMed ID: 16984119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of pullulanase: evidence for parallel binding of oligosaccharides in the active site.
    Mikami B; Iwamoto H; Malle D; Yoon HJ; Demirkan-Sarikaya E; Mezaki Y; Katsuya Y
    J Mol Biol; 2006 Jun; 359(3):690-707. PubMed ID: 16650854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.