BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 17188758)

  • 1. Rapid and efficient purification of Cowpea chlorotic mottle virus by sucrose cushion ultracentrifugation.
    Ali A; Roossinck MJ
    J Virol Methods; 2007 Apr; 141(1):84-6. PubMed ID: 17188758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A simple technique for separation of Cowpea chlorotic mottle virus from Cucumber mosaic virus in natural mixed infections.
    Ali A; Roossinck MJ
    J Virol Methods; 2008 Nov; 153(2):163-7. PubMed ID: 18755217
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression and self-assembly of cowpea chlorotic mottle virus-like particles in Pseudomonas fluorescens.
    Phelps JP; Dao P; Jin H; Rasochova L
    J Biotechnol; 2007 Feb; 128(2):290-6. PubMed ID: 17113675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Purification of anatid herpesvirus 1 particles by tangential-flow ultrafiltration and sucrose gradient ultracentrifugation.
    Guo Y; Cheng A; Wang M; Zhou Y
    J Virol Methods; 2009 Oct; 161(1):1-6. PubMed ID: 19152808
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A simple and efficient method for purification of intact white spot syndrome virus (WSSV) viral particles.
    Xie X; Li H; Xu L; Yang F
    Virus Res; 2005 Mar; 108(1-2):63-7. PubMed ID: 15681056
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the native CCMV virion with in vitro assembled CCMV virions by cryoelectron microscopy and image reconstruction.
    Fox JM; Wang G; Speir JA; Olson NH; Johnson JE; Baker TS; Young MJ
    Virology; 1998 Apr; 244(1):212-8. PubMed ID: 9581792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient purification of bromoviruses by ultrafiltration.
    Michel JP; Gingery M; Lavelle L
    J Virol Methods; 2004 Dec; 122(2):195-8. PubMed ID: 15542144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single codon change in a conserved motif of a bromovirus movement protein gene confers compatibility with a new host.
    Fujita Y; Mise K; Okuno T; Ahlquist P; Furusawa I
    Virology; 1996 Sep; 223(2):283-91. PubMed ID: 8806564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete nucleotide sequence of spring beauty latent virus, a bromovirus infectious to Arabidopsis thaliana.
    Fujisaki K; Hagihara F; Kaido M; Mise K; Okuno T
    Arch Virol; 2003 Jan; 148(1):165-75. PubMed ID: 12536302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispensability of 3' tRNA-like sequence for packaging cowpea chlorotic mottle virus genomic RNAs.
    Annamalai P; Rao AL
    Virology; 2005 Feb; 332(2):650-8. PubMed ID: 15680430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromovirus movement protein conditions for the host specificity of virus movement through the vascular system and affects pathogenicity in cowpea.
    Fujita Y; Fujita M; Mise K; Kobori T; Osaki T; Furusawa I
    Mol Plant Microbe Interact; 2000 Nov; 13(11):1195-203. PubMed ID: 11059486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Capsid protein of cowpea chlorotic mottle virus is a determinant for vector transmission by a beetle.
    Mello AF; Clark AJ; Perry KL
    J Gen Virol; 2010 Feb; 91(Pt 2):545-51. PubMed ID: 19828763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific single amino acid changes to Lys or Arg in the central region of the movement protein of a hybrid bromovirus are required for adaptation to a nonhost.
    Sasaki N; Fujita Y; Mise K; Furusawa I
    Virology; 2001 Jan; 279(1):47-57. PubMed ID: 11145888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel set of polyvalent primers that detect members of the genera Bromovirus and Cucumovirus.
    Seo JK; Lee YJ; Kim MK; Lee SH; Kim KH; Choi HS
    J Virol Methods; 2014 Jul; 203():112-5. PubMed ID: 24717165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional analysis of brome mosaic virus coat protein RNA-interacting domains.
    Calhoun SL; Rao AL
    Arch Virol; 2008; 153(2):231-45. PubMed ID: 18066637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protocol for Efficient Cell-Free Synthesis of Cowpea Chlorotic Mottle Virus-Like Particles Containing Heterologous RNAs.
    Garmann RF; Knobler CM; Gelbart WM
    Methods Mol Biol; 2018; 1776():249-265. PubMed ID: 29869247
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of coat protein mutations and reduced movement protein expression on infection spread by cowpea chlorotic mottle virus and its hybrid derivatives.
    De Jong W; Mise K; Chu A; Ahlquist P
    Virology; 1997 May; 232(1):167-73. PubMed ID: 9185600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular characterization of the complete genomes of two new field isolates of Cowpea chlorotic mottle virus, and their phylogenetic analysis.
    Ali A; Shafiekhani M; Olsen J
    Virus Genes; 2011 Aug; 43(1):120-9. PubMed ID: 21537997
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the RNA of the cowpea chlorotic mottle virus be released through a channel by means of free diffusion? A test in silico.
    Isea R; Aponte C; Cipriani R
    Biophys Chem; 2004 Feb; 107(2):101-6. PubMed ID: 14962592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Virus-ribosome complexes from cell-free translation systems supplemented with cowpea chlorotic mottle virus particles.
    Roenhorst JW; Verduin BJ; Goldbach RW
    Virology; 1989 Jan; 168(1):138-46. PubMed ID: 2909987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.