BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 17188871)

  • 1. In vitro selection of RNA aptamer against Escherichia coli release factor 1.
    Sando S; Ogawa A; Nishi T; Hayami M; Aoyama Y
    Bioorg Med Chem Lett; 2007 Mar; 17(5):1216-20. PubMed ID: 17188871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro selection of RNA aptamers for the Escherichia coli release factor 1.
    Ogawa A; Nishi T; Sando S; Aoyama Y
    Nucleic Acids Symp Ser (Oxf); 2005; (49):269-70. PubMed ID: 17150737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient suppression of the amber codon in E. coli in vitro translation system.
    Agafonov DE; Huang Y; Grote M; Sprinzl M
    FEBS Lett; 2005 Apr; 579(10):2156-60. PubMed ID: 15811334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduced action of polypeptide release factors induces mRNA cleavage and tmRNA tagging at stop codons in Escherichia coli.
    Li X; Yokota T; Ito K; Nakamura Y; Aiba H
    Mol Microbiol; 2007 Jan; 63(1):116-26. PubMed ID: 17229209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tripeptide 'anticodon' deciphers stop codons in messenger RNA.
    Ito K; Uno M; Nakamura Y
    Nature; 2000 Feb; 403(6770):680-4. PubMed ID: 10688208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Suppression of temperature-sensitive defects of polypeptide release factors RF-1 and RF-2 by mutations or by an excess of RF-3 in Escherichia coli.
    Matsumura K; Ito K; Kawazu Y; Mikuni O; Nakamura Y
    J Mol Biol; 1996 May; 258(4):588-99. PubMed ID: 8636994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Indirect regulation of translational termination efficiency at highly expressed genes and recoding sites by the factor recycling function of Escherichia coli release factor RF3.
    Crawford DJ; Ito K; Nakamura Y; Tate WP
    EMBO J; 1999 Feb; 18(3):727-32. PubMed ID: 9927432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ribosomal protein L11 mutations in two functional domains equally affect release factors 1 and 2 activity.
    Sato H; Ito K; Nakamura Y
    Mol Microbiol; 2006 Apr; 60(1):108-20. PubMed ID: 16556224
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Function of polypeptide chain release factor RF-3 in Escherichia coli. RF-3 action in termination is predominantly at UGA-containing stop signals.
    Grentzmann G; Brechemier-Baey D; Heurgué-Hamard V; Buckingham RH
    J Biol Chem; 1995 May; 270(18):10595-600. PubMed ID: 7737996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Termination-free prokaryotic protein translation by using anticodon-adjusted E. coli tRNASer as unified suppressors of the UAA/UGA/UAG stop codons. Read-through ribosome display of full-length DHFR with translated UTR as a buried spacer arm.
    Ogawa A; Sando S; Aoyama Y
    Chembiochem; 2006 Feb; 7(2):249-52. PubMed ID: 16381047
    [No Abstract]   [Full Text] [Related]  

  • 11. An RNA aptamer that discriminates bovine factor IX from human factor IX.
    Gopinath SC; Balasundaresan D; Akitomi J; Mizuno H
    J Biochem; 2006 Nov; 140(5):667-76. PubMed ID: 17030508
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors.
    Gao H; Zhou Z; Rawat U; Huang C; Bouakaz L; Wang C; Cheng Z; Liu Y; Zavialov A; Gursky R; Sanyal S; Ehrenberg M; Frank J; Song H
    Cell; 2007 Jun; 129(5):929-41. PubMed ID: 17540173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An RNA aptamer that induces transcription.
    Hunsicker A; Steber M; Mayer G; Meitert J; Klotzsche M; Blind M; Hillen W; Berens C; Suess B
    Chem Biol; 2009 Feb; 16(2):173-80. PubMed ID: 19246008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [How translation termination factor eRF1 Euplotes does not recognise UGA stop codon].
    Lekomtsev SA; Kolosov PM; Frolova LIu; Bidou L; Rousset JP; Kiselev LL
    Mol Biol (Mosk); 2007; 41(6):1014-22. PubMed ID: 18318120
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive screening of amber suppressor tRNAs suitable for incorporation of non-natural amino acids in a cell-free translation system.
    Taira H; Matsushita Y; Kojima K; Shiraga K; Hohsaka T
    Biochem Biophys Res Commun; 2008 Sep; 374(2):304-8. PubMed ID: 18634752
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro selection of RNA aptamers derived from a genomic human library against the TAR RNA element of HIV-1.
    Watrin M; Von Pelchrzim F; Dausse E; Schroeder R; Toulmé JJ
    Biochemistry; 2009 Jul; 48(26):6278-84. PubMed ID: 19496624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of tRNA suppressors to probe regulation of Escherichia coli release factor 2.
    Curran JF; Yarus M
    J Mol Biol; 1988 Sep; 203(1):75-83. PubMed ID: 3054124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accommodating the bacterial decoding release factor as an alien protein among the RNAs at the active site of the ribosome.
    Poole ES; Young DJ; Askarian-Amiri ME; Scarlett DJ; Tate WP
    Cell Res; 2007 Jul; 17(7):591-607. PubMed ID: 17621307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro selection of phage RB69 RegA RNA binding sites yields UAA triplets.
    Dean TR; Allen SV; Miller ES
    Virology; 2005 May; 336(1):26-36. PubMed ID: 15866068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced phosphoserine insertion during Escherichia coli protein synthesis via partial UAG codon reassignment and release factor 1 deletion.
    Heinemann IU; Rovner AJ; Aerni HR; Rogulina S; Cheng L; Olds W; Fischer JT; Söll D; Isaacs FJ; Rinehart J
    FEBS Lett; 2012 Oct; 586(20):3716-22. PubMed ID: 22982858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.