These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 17189305)

  • 1. Single giant vesicle rupture events reveal multiple mechanisms of glass-supported bilayer formation.
    Hamai C; Cremer PS; Musser SM
    Biophys J; 2007 Mar; 92(6):1988-99. PubMed ID: 17189305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induced rupture of vesicles adsorbed on glass by pore formation at the surface-bilayer interface.
    Kataoka-Hamai C; Yamazaki T
    Langmuir; 2015 Feb; 31(4):1312-9. PubMed ID: 25575280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of average phospholipid curvature on supported bilayer formation on glass by vesicle fusion.
    Hamai C; Yang T; Kataoka S; Cremer PS; Musser SM
    Biophys J; 2006 Feb; 90(4):1241-8. PubMed ID: 16299084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antimicrobial peptide magainin 2-induced rupture of single giant unilamellar vesicles comprising E. coli polar lipids.
    Billah MM; Or Rashid MM; Ahmed M; Yamazaki M
    Biochim Biophys Acta Biomembr; 2023 Mar; 1865(3):184112. PubMed ID: 36567034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early steps of supported bilayer formation probed by single vesicle fluorescence assays.
    Johnson JM; Ha T; Chu S; Boxer SG
    Biophys J; 2002 Dec; 83(6):3371-9. PubMed ID: 12496104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction Mechanisms of Giant Unilamellar Vesicles with Hydrophobic Glass Surfaces and Silicone Oil-Water Interfaces: Adsorption, Deformation, Rupture, Dynamic Shape Changes, Internal Vesicle Formation, and Desorption.
    Kataoka-Hamai C; Kawakami K
    Langmuir; 2019 Dec; 35(49):16136-16145. PubMed ID: 31697503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatiotemporal Kinetics of Supported Lipid Bilayer Formation on Glass via Vesicle Adsorption and Rupture.
    Mapar M; Jõemetsa S; Pace H; Zhdanov VP; Agnarsson B; Höök F
    J Phys Chem Lett; 2018 Sep; 9(17):5143-5149. PubMed ID: 30137991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain Sorting in Giant Unilamellar Vesicles Adsorbed on Glass.
    Kataoka-Hamai C; Kawakami K
    Langmuir; 2021 Jan; 37(3):1082-1088. PubMed ID: 33440115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulations of lipid vesicle rupture induced by an adjacent supported lipid bilayer patch.
    Allerbo O; Lundström A; Dimitrievski K
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):632-6. PubMed ID: 20965704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights on the interactions of chitosan with phospholipid vesicles. Part II: Membrane stiffening and pore formation.
    Mertins O; Dimova R
    Langmuir; 2013 Nov; 29(47):14552-9. PubMed ID: 24168435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer edges catalyze supported lipid bilayer formation.
    Weirich KL; Israelachvili JN; Fygenson DK
    Biophys J; 2010 Jan; 98(1):85-92. PubMed ID: 20085721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vesicle adsorption and lipid bilayer formation on glass studied by atomic force microscopy.
    Schönherr H; Johnson JM; Lenz P; Frank CW; Boxer SG
    Langmuir; 2004 Dec; 20(26):11600-6. PubMed ID: 15595789
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Phosphatidylethanolamine on Pore Formation Induced by the Antimicrobial Peptide PGLa.
    Ahmed M; Islam MZ; Billah MM; Yamazaki M
    J Phys Chem B; 2024 Mar; 128(11):2684-2696. PubMed ID: 38450565
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Packing density changes of supported lipid bilayers observed by fluorescence microscopy and quartz crystal microbalance-dissipation.
    Kataoka-Hamai C; Higuchi M
    J Phys Chem B; 2014 Sep; 118(37):10934-44. PubMed ID: 25163021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Model lipid bilayer with facile diffusion of lipids and integral membrane proteins.
    Wang T; Ingram C; Weisshaar JC
    Langmuir; 2010 Jul; 26(13):11157-64. PubMed ID: 20459075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pore formation in a lipid bilayer under a tension ramp: modeling the distribution of rupture tensions.
    Boucher PA; Joós B; Zuckermann MJ; Fournier L
    Biophys J; 2007 Jun; 92(12):4344-55. PubMed ID: 17400693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy.
    Andrecka J; Spillane KM; Ortega-Arroyo J; Kukura P
    ACS Nano; 2013 Dec; 7(12):10662-70. PubMed ID: 24251388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles.
    Kataoka-Hamai C
    Biophys J; 2024 Jul; 123(13):1857-1868. PubMed ID: 38822522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexisting stripe- and patch-shaped domains in giant unilamellar vesicles.
    Li L; Cheng JX
    Biochemistry; 2006 Oct; 45(39):11819-26. PubMed ID: 17002282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confocal microscopic observation of fusion between baculovirus budded virus envelopes and single giant unilamellar vesicles.
    Kamiya K; Kobayashi J; Yoshimura T; Tsumoto K
    Biochim Biophys Acta; 2010 Sep; 1798(9):1625-31. PubMed ID: 20493165
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.