These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 17189313)
1. Laser-induced transient grating analysis of dynamics of interaction between sensory rhodopsin II D75N and the HtrII transducer. Inoue K; Sasaki J; Spudich JL; Terazima M Biophys J; 2007 Mar; 92(6):2028-40. PubMed ID: 17189313 [TBL] [Abstract][Full Text] [Related]
2. Signal transmission through the HtrII transducer alters the interaction of two alpha-helices in the HAMP domain. Inoue K; Sasaki J; Spudich JL; Terazima M J Mol Biol; 2008 Feb; 376(4):963-70. PubMed ID: 18199454 [TBL] [Abstract][Full Text] [Related]
3. The transducer protein HtrII modulates the lifetimes of sensory rhodopsin II photointermediates. Sasaki J; Spudich JL Biophys J; 1998 Nov; 75(5):2435-40. PubMed ID: 9788938 [TBL] [Abstract][Full Text] [Related]
4. The primary structures of the Archaeon Halobacterium salinarium blue light receptor sensory rhodopsin II and its transducer, a methyl-accepting protein. Zhang W; Brooun A; Mueller MM; Alam M Proc Natl Acad Sci U S A; 1996 Aug; 93(16):8230-5. PubMed ID: 8710852 [TBL] [Abstract][Full Text] [Related]
5. HAMP domain signal relay mechanism in a sensory rhodopsin-transducer complex. Wang J; Sasaki J; Tsai AL; Spudich JL J Biol Chem; 2012 Jun; 287(25):21316-25. PubMed ID: 22511775 [TBL] [Abstract][Full Text] [Related]
6. Proton circulation during the photocycle of sensory rhodopsin II. Sasaki J; Spudich JL Biophys J; 1999 Oct; 77(4):2145-52. PubMed ID: 10512834 [TBL] [Abstract][Full Text] [Related]
7. Role of charged residues of pharaonis phoborhodopsin (sensory rhodopsin II) in its interaction with the transducer protein. Sudo Y; Iwamoto M; Shimono K; Kamo N Biochemistry; 2004 Nov; 43(43):13748-54. PubMed ID: 15504037 [TBL] [Abstract][Full Text] [Related]
8. Computational analysis of the transient movement of helices in sensory rhodopsin II. Sato Y; Hata M; Neya S; Hoshino T Protein Sci; 2005 Jan; 14(1):183-92. PubMed ID: 15576566 [TBL] [Abstract][Full Text] [Related]
9. Comparative simulations of the ground state and the M-intermediate state of the sensory rhodopsin II-transducer complex with a HAMP domain model. Nishikata K; Ikeguchi M; Kidera A Biochemistry; 2012 Jul; 51(30):5958-66. PubMed ID: 22757657 [TBL] [Abstract][Full Text] [Related]
10. Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. Wegener AA; Klare JP; Engelhard M; Steinhoff HJ EMBO J; 2001 Oct; 20(19):5312-9. PubMed ID: 11574462 [TBL] [Abstract][Full Text] [Related]
11. The cytoplasmic membrane-proximal domain of the HtrII transducer interacts with the E-F loop of photoactivated Natronomonas pharaonis sensory rhodopsin II. Yang CS; Sineshchekov O; Spudich EN; Spudich JL J Biol Chem; 2004 Oct; 279(41):42970-6. PubMed ID: 15262967 [TBL] [Abstract][Full Text] [Related]
12. Conformational states of HAMP domains interacting with sensory rhodopsin membrane systems: an integrated all-atom and coarse-grained molecular dynamics simulation approach. Sahoo BR; Fujiwara T Mol Biosyst; 2016 Dec; 13(1):193-207. PubMed ID: 27901172 [TBL] [Abstract][Full Text] [Related]
13. Ground state structure of D75N mutant of sensory rhodopsin II in complex with its cognate transducer. Ishchenko A; Round E; Borshchevskiy V; Grudinin S; Gushchin I; Klare JP; Balandin T; Remeeva A; Engelhard M; Büldt G; Gordeliy V J Photochem Photobiol B; 2013 Jun; 123():55-8. PubMed ID: 23619282 [TBL] [Abstract][Full Text] [Related]
14. Aspartate 75 mutation in sensory rhodopsin II from Natronobacterium pharaonis does not influence the production of the K-like intermediate, but strongly affects its relaxation pathway. Losi A; Wegener AA; Engelhard M; Gärtner W; Braslavsky SE Biophys J; 2000 May; 78(5):2581-9. PubMed ID: 10777754 [TBL] [Abstract][Full Text] [Related]
15. Time-resolved detection of sensory rhodopsin II-transducer interaction. Inoue K; Sasaki J; Morisaki M; Tokunaga F; Terazima M Biophys J; 2004 Oct; 87(4):2587-97. PubMed ID: 15454453 [TBL] [Abstract][Full Text] [Related]
16. Functional importance of the interhelical hydrogen bond between Thr204 and Tyr174 of sensory rhodopsin II and its alteration during the signaling process. Sudo Y; Furutani Y; Kandori H; Spudich JL J Biol Chem; 2006 Nov; 281(45):34239-45. PubMed ID: 16968701 [TBL] [Abstract][Full Text] [Related]
17. The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation. Holterhues J; Bordignon E; Klose D; Rickert C; Klare JP; Martell S; Li L; Engelhard M; Steinhoff HJ Biophys J; 2011 May; 100(9):2275-82. PubMed ID: 21539797 [TBL] [Abstract][Full Text] [Related]
18. Clustering and dynamics of phototransducer signaling domains revealed by site-directed spin labeling electron paramagnetic resonance on SRII/HtrII in membranes and nanodiscs. Orban-Glaß I; Voskoboynikova N; Busch KB; Klose D; Rickert C; Mosslehy W; Roder F; Wilkens V; Piehler J; Engelhard M; Steinhoff HJ; Klare JP Biochemistry; 2015 Jan; 54(2):349-62. PubMed ID: 25489970 [TBL] [Abstract][Full Text] [Related]
19. Association between a photo-intermediate of a M-lacking mutant D75N of pharaonis phoborhodopsin and its cognate transducer. Sudo Y; Iwamoto M; Shimono K; Kamo N J Photochem Photobiol B; 2002 Jul; 67(3):171-6. PubMed ID: 12167316 [TBL] [Abstract][Full Text] [Related]
20. Tyr-199 and charged residues of pharaonis Phoborhodopsin are important for the interaction with its transducer. Sudo Y; Iwamoto M; Shimono K; Kamo N Biophys J; 2002 Jul; 83(1):427-32. PubMed ID: 12080131 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]