These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 17189327)
1. Diversity and evolution of CYCLOIDEA-like TCP genes in relation to flower development in Papaveraceae. Damerval C; Le Guilloux M; Jager M; Charon C Plant Physiol; 2007 Feb; 143(2):759-72. PubMed ID: 17189327 [TBL] [Abstract][Full Text] [Related]
2. Evolutionary diversification of CYC/TB1-like TCP homologs and their recruitment for the control of branching and floral morphology in Papaveraceae (basal eudicots). Zhao Y; Pfannebecker K; Dommes AB; Hidalgo O; Becker A; Elomaa P New Phytol; 2018 Oct; 220(1):317-331. PubMed ID: 29949661 [TBL] [Abstract][Full Text] [Related]
3. Diversification of CYCLOIDEA-like TCP genes in the basal eudicot families Fumariaceae and Papaveraceae s.str. Kölsch A; Gleissberg S Plant Biol (Stuttg); 2006 Sep; 8(5):680-7. PubMed ID: 16883484 [TBL] [Abstract][Full Text] [Related]
4. Analysis of the CYC/TB1 class of TCP transcription factors in basal angiosperms and magnoliids. Horn S; Pabón-Mora N; Theuß VS; Busch A; Zachgo S Plant J; 2015 Feb; 81(4):559-71. PubMed ID: 25557238 [TBL] [Abstract][Full Text] [Related]
5. Characterization of CYCLOIDEA-like genes in Proteaceae, a basal eudicot family with multiple shifts in floral symmetry. Citerne HL; Reyes E; Le Guilloux M; Delannoy E; Simonnet F; Sauquet H; Weston PH; Nadot S; Damerval C Ann Bot; 2017 Feb; 119(3):367-378. PubMed ID: 28025288 [TBL] [Abstract][Full Text] [Related]
6. Why do paralogs persist? Molecular evolution of CYCLOIDEA and related floral symmetry genes in Antirrhineae (Veronicaceae). Hileman LC; Baum DA Mol Biol Evol; 2003 Apr; 20(4):591-600. PubMed ID: 12679544 [TBL] [Abstract][Full Text] [Related]
7. A phylogenomic investigation of CYCLOIDEA-like TCP genes in the Leguminosae. Citerne HL; Luo D; Pennington RT; Coen E; Cronk QC Plant Physiol; 2003 Mar; 131(3):1042-53. PubMed ID: 12644657 [TBL] [Abstract][Full Text] [Related]
8. Conservation and diversification of the symmetry developmental program among close relatives of snapdragon with divergent floral morphologies. Preston JC; Kost MA; Hileman LC New Phytol; 2009; 182(3):751-762. PubMed ID: 19291006 [TBL] [Abstract][Full Text] [Related]
9. Duplications and expression of DIVARICATA-like genes in dipsacales. Howarth DG; Donoghue MJ Mol Biol Evol; 2009 Jun; 26(6):1245-58. PubMed ID: 19289599 [TBL] [Abstract][Full Text] [Related]
10. Evolution and diversification of the CYC/TB1 gene family in Asteraceae--a comparative study in Gerbera (Mutisieae) and sunflower (Heliantheae). Tähtiharju S; Rijpkema AS; Vetterli A; Albert VA; Teeri TH; Elomaa P Mol Biol Evol; 2012 Apr; 29(4):1155-66. PubMed ID: 22101417 [TBL] [Abstract][Full Text] [Related]
11. Evolution of CYCLOIDEA-like genes in Fabales: Insights into duplication patterns and the control of floral symmetry. Zhao Z; Hu J; Chen S; Luo Z; Luo D; Wen J; Tu T; Zhang D Mol Phylogenet Evol; 2019 Mar; 132():81-89. PubMed ID: 30508631 [TBL] [Abstract][Full Text] [Related]
12. Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae). Groot EP; Sinha N; Gleissberg S Plant Mol Biol; 2005 Jun; 58(3):317-31. PubMed ID: 16021398 [TBL] [Abstract][Full Text] [Related]
13. Evolution of the TCP gene family in Asteridae: cladistic and network approaches to understanding regulatory gene family diversification and its impact on morphological evolution. Reeves PA; Olmstead RG Mol Biol Evol; 2003 Dec; 20(12):1997-2009. PubMed ID: 12885953 [TBL] [Abstract][Full Text] [Related]
14. Floral zygomorphy, the recurring evolution of a successful trait. Cubas P Bioessays; 2004 Nov; 26(11):1175-84. PubMed ID: 15499590 [TBL] [Abstract][Full Text] [Related]
15. Molecular evolution of cycloidea-like genes in Fabaceae. Fukuda T; Yokoyama J; Maki M J Mol Evol; 2003 Nov; 57(5):588-97. PubMed ID: 14738317 [TBL] [Abstract][Full Text] [Related]
16. Functional diversification of duplicated CYC2 clade genes in regulation of inflorescence development in Gerbera hybrida (Asteraceae). Juntheikki-Palovaara I; Tähtiharju S; Lan T; Broholm SK; Rijpkema AS; Ruonala R; Kale L; Albert VA; Teeri TH; Elomaa P Plant J; 2014 Sep; 79(5):783-96. PubMed ID: 24923429 [TBL] [Abstract][Full Text] [Related]
17. Control of corolla monosymmetry in the Brassicaceae Iberis amara. Busch A; Zachgo S Proc Natl Acad Sci U S A; 2007 Oct; 104(42):16714-9. PubMed ID: 17940055 [TBL] [Abstract][Full Text] [Related]
18. Evolution of the YABBY gene family with emphasis on the basal eudicot Eschscholzia californica (Papaveraceae). Bartholmes C; Hidalgo O; Gleissberg S Plant Biol (Stuttg); 2012 Jan; 14(1):11-23. PubMed ID: 21974722 [TBL] [Abstract][Full Text] [Related]
19. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events. Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333 [TBL] [Abstract][Full Text] [Related]
20. EST database for early flower development in California poppy (Eschscholzia californica Cham., Papaveraceae) tags over 6,000 genes from a basal eudicot. Carlson JE; Leebens-Mack JH; Wall PK; Zahn LM; Mueller LA; Landherr LL; Hu Y; Ilut DC; Arrington JM; Choirean S; Becker A; Field D; Tanksley SD; Ma H; dePamphilis CW Plant Mol Biol; 2006 Oct; 62(3):351-69. PubMed ID: 16915518 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]