These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 17189386)
1. Bub1 up-regulation and hyperphosphorylation promote malignant transformation in SV40 tag-induced transgenic mouse models. Guo C; Wu G; Chin JL; Bauman G; Moussa M; Wang F; Greenberg NM; Taylor SS; Xuan JW Mol Cancer Res; 2006 Dec; 4(12):957-69. PubMed ID: 17189386 [TBL] [Abstract][Full Text] [Related]
2. The G gamma / T-15 transgenic mouse model of androgen-independent prostate cancer: target cells of carcinogenesis and the effect of the vitamin D analogue EB 1089. Perez-Stable CM; Schwartz GG; Farinas A; Finegold M; Binderup L; Howard GA; Roos BA Cancer Epidemiol Biomarkers Prev; 2002 Jun; 11(6):555-63. PubMed ID: 12050097 [TBL] [Abstract][Full Text] [Related]
3. Expression and role of Foxa proteins in prostate cancer. Mirosevich J; Gao N; Gupta A; Shappell SB; Jove R; Matusik RJ Prostate; 2006 Jul; 66(10):1013-28. PubMed ID: 16001449 [TBL] [Abstract][Full Text] [Related]
4. Knockin of SV40 Tag oncogene in a mouse adenocarcinoma of the prostate model demonstrates advantageous features over the transgenic model. Duan W; Gabril MY; Moussa M; Chan FL; Sakai H; Fong G; Xuan JW Oncogene; 2005 Feb; 24(9):1510-24. PubMed ID: 15674347 [TBL] [Abstract][Full Text] [Related]
5. Increased expression of mitotic checkpoint genes in breast cancer cells with chromosomal instability. Yuan B; Xu Y; Woo JH; Wang Y; Bae YK; Yoon DS; Wersto RP; Tully E; Wilsbach K; Gabrielson E Clin Cancer Res; 2006 Jan; 12(2):405-10. PubMed ID: 16428479 [TBL] [Abstract][Full Text] [Related]
6. Prostate targeting: PSP94 gene promoter/enhancer region directed prostate tissue-specific expression in a transgenic mouse prostate cancer model. Gabril MY; Onita T; Ji PG; Sakai H; Chan FL; Koropatnick J; Chin JL; Moussa M; Xuan JW Gene Ther; 2002 Dec; 9(23):1589-99. PubMed ID: 12424611 [TBL] [Abstract][Full Text] [Related]
7. Overexpression of the mitotic checkpoint genes BUB1, BUBR1, and BUB3 in gastric cancer--association with tumour cell proliferation. Grabsch H; Takeno S; Parsons WJ; Pomjanski N; Boecking A; Gabbert HE; Mueller W J Pathol; 2003 May; 200(1):16-22. PubMed ID: 12692836 [TBL] [Abstract][Full Text] [Related]
8. Genomic instability at the BUB1 locus in colorectal cancer, but not in non-small cell lung cancer. Jaffrey RG; Pritchard SC; Clark C; Murray GI; Cassidy J; Kerr KM; Nicolson MC; McLeod HL Cancer Res; 2000 Aug; 60(16):4349-52. PubMed ID: 10969775 [TBL] [Abstract][Full Text] [Related]
9. Expression of BUB1 protein in gastric cancer correlates with the histological subtype, but not with DNA ploidy or microsatellite instability. Grabsch HI; Askham JM; Morrison EE; Pomjanski N; Lickvers K; Parsons WJ; Boecking A; Gabbert HE; Mueller W J Pathol; 2004 Feb; 202(2):208-14. PubMed ID: 14743503 [TBL] [Abstract][Full Text] [Related]
10. APC inactivation associates with abnormal mitosis completion and concomitant BUB1B/MAD2L1 up-regulation. Abal M; Obrador-Hevia A; Janssen KP; Casadome L; Menendez M; Carpentier S; Barillot E; Wagner M; Ansorge W; Moeslein G; Fsihi H; Bezrookove V; Reventos J; Louvard D; Capella G; Robine S Gastroenterology; 2007 Jun; 132(7):2448-58. PubMed ID: 17570218 [TBL] [Abstract][Full Text] [Related]
11. No mutations of the Bub1 gene in human gastric and oral cancer cell lines. Nakagawa H; Yokozaki H; Oue N; Sugiyama M; Ishikawa T; Tahara E; Yasui W Oncol Rep; 2002; 9(6):1229-32. PubMed ID: 12375025 [TBL] [Abstract][Full Text] [Related]
12. Progression of prostate cancer from a subset of p63-positive basal epithelial cells in FG/Tag transgenic mice. Reiner T; de Las Pozas A; Parrondo R; Perez-Stable C Mol Cancer Res; 2007 Nov; 5(11):1171-9. PubMed ID: 17982114 [TBL] [Abstract][Full Text] [Related]
13. Identification of genes potentially involved in the acquisition of androgen-independent and metastatic tumor growth in an autochthonous genetically engineered mouse prostate cancer model. Morgenbesser SD; McLaren RP; Richards B; Zhang M; Akmaev VR; Winter SF; Mineva ND; Kaplan-Lefko PJ; Foster BA; Cook BP; Dufault MR; Cao X; Wang CJ; Teicher BA; Klinger KW; Greenberg NM; Madden SL Prostate; 2007 Jan; 67(1):83-106. PubMed ID: 17013881 [TBL] [Abstract][Full Text] [Related]
14. MAD2DeltaC induces aneuploidy and promotes anchorage-independent growth in human prostate epithelial cells. To-Ho KW; Cheung HW; Ling MT; Wong YC; Wang X Oncogene; 2008 Jan; 27(3):347-57. PubMed ID: 17621272 [TBL] [Abstract][Full Text] [Related]
15. Mammalian BUB1 protein kinases: map positions and in vivo expression. Pangilinan F; Li Q; Weaver T; Lewis BC; Dang CV; Spencer F Genomics; 1997 Dec; 46(3):379-88. PubMed ID: 9441741 [TBL] [Abstract][Full Text] [Related]
16. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax. Sasaki M; Sugimoto K; Tamayose K; Ando M; Tanaka Y; Oshimi K Oncogene; 2006 Jun; 25(26):3621-7. PubMed ID: 16449967 [TBL] [Abstract][Full Text] [Related]
17. 2-Methoxyestradiol inhibits prostate tumor development in transgenic adenocarcinoma of mouse prostate: role of tumor necrosis factor-alpha-stimulated gene 6. Garcia GE; Wisniewski HG; Lucia MS; Arevalo N; Slaga TJ; Kraft SL; Strange R; Kumar AP Clin Cancer Res; 2006 Feb; 12(3 Pt 1):980-8. PubMed ID: 16467113 [TBL] [Abstract][Full Text] [Related]
18. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Recchia AG; Musti AM; Lanzino M; Panno ML; Turano E; Zumpano R; Belfiore A; Andò S; Maggiolini M Int J Biochem Cell Biol; 2009 Mar; 41(3):603-14. PubMed ID: 18692155 [TBL] [Abstract][Full Text] [Related]
19. Noninvasive bioluminescence imaging of normal and spontaneously transformed prostate tissue in mice. Lyons SK; Lim E; Clermont AO; Dusich J; Zhu L; Campbell KD; Coffee RJ; Grass DS; Hunter J; Purchio T; Jenkins D Cancer Res; 2006 May; 66(9):4701-7. PubMed ID: 16651422 [TBL] [Abstract][Full Text] [Related]
20. Protein kinase Cepsilon interacts with signal transducers and activators of transcription 3 (Stat3), phosphorylates Stat3Ser727, and regulates its constitutive activation in prostate cancer. Aziz MH; Manoharan HT; Church DR; Dreckschmidt NE; Zhong W; Oberley TD; Wilding G; Verma AK Cancer Res; 2007 Sep; 67(18):8828-38. PubMed ID: 17875724 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]