These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
367 related articles for article (PubMed ID: 17189446)
1. Mechanism of resistance to Bacillus thuringiensis toxin Cry1Ac in a greenhouse population of the cabbage looper, Trichoplusia ni. Wang P; Zhao JZ; Rodrigo-Simón A; Kain W; Janmaat AF; Shelton AM; Ferré J; Myers J Appl Environ Microbiol; 2007 Feb; 73(4):1199-207. PubMed ID: 17189446 [TBL] [Abstract][Full Text] [Related]
2. Resistance to Bacillus thuringiensis Toxin Cry2Ab in Trichoplusia ni Is Conferred by a Novel Genetic Mechanism. Song X; Kain W; Cassidy D; Wang P Appl Environ Microbiol; 2015 Aug; 81(15):5184-95. PubMed ID: 26025894 [TBL] [Abstract][Full Text] [Related]
3. Inheritance of resistance to Bacillus thuringiensis Cry1Ac toxin in a greenhouse-derived strain of cabbage looper (Lepidoptera: Noctuidae). Kain WC; Zhao JZ; Janmaat AF; Myers J; Shelton AM; Wang P J Econ Entomol; 2004 Dec; 97(6):2073-8. PubMed ID: 15666767 [TBL] [Abstract][Full Text] [Related]
4. Resistance of Cabbage Loopers to Bacillus thuringiensis (Bt) Toxin Cry1F and to Dual-Bt Toxin WideStrike Cotton Plants. Kain W; Cotto-Rivera RO; Wang P Appl Environ Microbiol; 2022 Oct; 88(20):e0119422. PubMed ID: 36200769 [TBL] [Abstract][Full Text] [Related]
5. Resistance of Trichoplusia ni to Bacillus thuringiensis toxin Cry1Ac is independent of alteration of the cadherin-like receptor for Cry toxins. Zhang X; Tiewsiri K; Kain W; Huang L; Wang P PLoS One; 2012; 7(5):e35991. PubMed ID: 22606242 [TBL] [Abstract][Full Text] [Related]
6. Bt Cry1Ac resistance in Trichoplusia ni is conferred by multi-gene mutations. Ma X; Shao E; Chen W; Cotto-Rivera RO; Yang X; Kain W; Fei Z; Wang P Insect Biochem Mol Biol; 2022 Jan; 140():103678. PubMed ID: 34780898 [TBL] [Abstract][Full Text] [Related]
7. Genetic and biochemical characterization of field-evolved resistance to Bacillus thuringiensis toxin Cry1Ac in the diamondback moth, Plutella xylostella. Sayyed AH; Raymond B; Ibiza-Palacios MS; Escriche B; Wright DJ Appl Environ Microbiol; 2004 Dec; 70(12):7010-7. PubMed ID: 15574894 [TBL] [Abstract][Full Text] [Related]
8. Binding of Bacillus thuringiensis Cry1A toxins to brush border membrane vesicles of midgut from Cry1Ac susceptible and resistant Plutella xylostella. Higuchi M; Haginoya K; Yamazaki T; Miyamoto K; Katagiri T; Tomimoto K; Shitomi Y; Hayakawa T; Sato R; Hori H Comp Biochem Physiol B Biochem Mol Biol; 2007 Aug; 147(4):716-24. PubMed ID: 17543562 [TBL] [Abstract][Full Text] [Related]
9. Differential alteration of two aminopeptidases N associated with resistance to Bacillus thuringiensis toxin Cry1Ac in cabbage looper. Tiewsiri K; Wang P Proc Natl Acad Sci U S A; 2011 Aug; 108(34):14037-42. PubMed ID: 21844358 [TBL] [Abstract][Full Text] [Related]
10. Modified Bacillus thuringiensis toxins and a hybrid B. thuringiensis strain counter greenhouse-selected resistance in Trichoplusia ni. Franklin MT; Nieman CL; Janmaat AF; Soberón M; Bravo A; Tabashnik BE; Myers JH Appl Environ Microbiol; 2009 Sep; 75(17):5739-41. PubMed ID: 19592525 [TBL] [Abstract][Full Text] [Related]
11. Decreased Cry1Ac activation by midgut proteases associated with Cry1Ac resistance in Helicoverpa zea. Zhang M; Wei J; Ni X; Zhang J; Jurat-Fuentes JL; Fabrick JA; Carrière Y; Tabashnik BE; Li X Pest Manag Sci; 2019 Apr; 75(4):1099-1106. PubMed ID: 30264537 [TBL] [Abstract][Full Text] [Related]
13. Construction and characterisation of near-isogenic Plutella xylostella (Lepidoptera: Plutellidae) strains resistant to Cry1Ac toxin. Zhu X; Lei Y; Yang Y; Baxter SW; Li J; Wu Q; Wang S; Xie W; Guo Z; Fu W; Zhang Y Pest Manag Sci; 2015 Feb; 71(2):225-33. PubMed ID: 24687616 [TBL] [Abstract][Full Text] [Related]
14. Interaction of Bacillus thuringiensis toxins with larval midgut binding sites of Helicoverpa armigera (Lepidoptera: Noctuidae). Estela A; Escriche B; Ferré J Appl Environ Microbiol; 2004 Mar; 70(3):1378-84. PubMed ID: 15006756 [TBL] [Abstract][Full Text] [Related]
15. Common, but complex, mode of resistance of Plutella xylostella to Bacillus thuringiensis toxins Cry1Ab and Cry1Ac. Sayyed AH; Gatsi R; Ibiza-Palacios MS; Escriche B; Wright DJ; Crickmore N Appl Environ Microbiol; 2005 Nov; 71(11):6863-9. PubMed ID: 16269720 [TBL] [Abstract][Full Text] [Related]
16. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
17. Screening for Bacillus thuringiensis crystal proteins active against the cabbage looper, Trichoplusia ni. Iracheta MM; Pereyra-Alférez B; Galán-Wong L; Ferré J J Invertebr Pathol; 2000 Jul; 76(1):70-5. PubMed ID: 10963406 [TBL] [Abstract][Full Text] [Related]
18. Different mechanisms of resistance to Bacillus thuringiensis toxins in the indianmeal moth. Herrero S; Oppert B; Ferré J Appl Environ Microbiol; 2001 Mar; 67(3):1085-9. PubMed ID: 11229895 [TBL] [Abstract][Full Text] [Related]
19. Cross-resistance responses of CrylAc-selected Heliothis virescens (Lepidoptera: Noctuidae) to the Bacillus thuringiensis protein vip3A. Jackson RE; Marcus MA; Gould F; Bradley JR; Van Duyn JW J Econ Entomol; 2007 Feb; 100(1):180-6. PubMed ID: 17370826 [TBL] [Abstract][Full Text] [Related]
20. Analyses of Cry1Ab binding in resistant and susceptible strains of the European corn borer, Ostrinia nubilalis (Hubner) (Lepidoptera: Crambidae). Siqueira HA; González-Cabrera J; Ferré J; Flannagan R; Siegfried BD Appl Environ Microbiol; 2006 Aug; 72(8):5318-24. PubMed ID: 16885282 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]