These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 17189482)

  • 1. Thermodynamic stability of a cold-adapted protein, type III antifreeze protein, and energetic contribution of salt bridges.
    García-Arribas O; Mateo R; Tomczak MM; Davies PL; Mateu MG
    Protein Sci; 2007 Feb; 16(2):227-38. PubMed ID: 17189482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of backbone dynamics of the type III antifreeze protein and antifreeze-like domain of human sialic acid synthase.
    Choi YG; Park CJ; Kim HE; Seo YJ; Lee AR; Choi SR; Lee SS; Lee JH
    J Biomol NMR; 2015 Feb; 61(2):137-50. PubMed ID: 25575834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature-induced unfolding pathway of a type III antifreeze protein: insight from molecular dynamics simulation.
    Kundu S; Roy D
    J Mol Graph Model; 2008 Aug; 27(1):88-94. PubMed ID: 18434222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding the mechanism of ice binding by type III antifreeze proteins.
    Antson AA; Smith DJ; Roper DI; Lewis S; Caves LS; Verma CS; Buckley SL; Lillford PJ; Hubbard RE
    J Mol Biol; 2001 Jan; 305(4):875-89. PubMed ID: 11162099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of surface charge on the thermal stability and ice recrystallization inhibition activity of antifreeze protein III (AFP III).
    Deller RC; Carter BM; Zampetakis I; Scarpa F; Perriman AW
    Biochem Biophys Res Commun; 2018 Jan; 495(1):1055-1060. PubMed ID: 29137985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR study of the antifreeze activities of active and inactive isoforms of a type III antifreeze protein.
    Choi SR; Seo YJ; Kim M; Eo Y; Ahn HC; Lee AR; Park CJ; Ryu KS; Cheong HK; Lee SS; Jin E; Lee JH
    FEBS Lett; 2016 Dec; 590(23):4202-4212. PubMed ID: 27718246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of hydrophobic residues to ice binding by fish type III antifreeze protein.
    Baardsnes J; Davies PL
    Biochim Biophys Acta; 2002 Nov; 1601(1):49-54. PubMed ID: 12429502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, crystal structure determination and functional characterization of type III antifreeze proteins from the European eelpout Zoarces viviparus.
    Wilkens C; Poulsen JC; Ramløv H; Lo Leggio L
    Cryobiology; 2014 Aug; 69(1):163-8. PubMed ID: 25025819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contribution of surface salt bridges to protein stability.
    Strop P; Mayo SL
    Biochemistry; 2000 Feb; 39(6):1251-5. PubMed ID: 10684603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and thermodynamic studies on a salt-bridge triad in the NADP-binding domain of glutamate dehydrogenase from Thermotoga maritima: cooperativity and electrostatic contribution to stability.
    Lebbink JH; Consalvi V; Chiaraluce R; Berndt KD; Ladenstein R
    Biochemistry; 2002 Dec; 41(52):15524-35. PubMed ID: 12501181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contribution of salt bridges near the surface of a protein to the conformational stability.
    Takano K; Tsuchimori K; Yamagata Y; Yutani K
    Biochemistry; 2000 Oct; 39(40):12375-81. PubMed ID: 11015217
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global analysis of the acid-induced and urea-induced unfolding of staphylococcal nuclease and two of its variants.
    Ionescu RM; Eftink MR
    Biochemistry; 1997 Feb; 36(5):1129-40. PubMed ID: 9033404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Solid-state NMR on a type III antifreeze protein in the presence of ice.
    Siemer AB; McDermott AE
    J Am Chem Soc; 2008 Dec; 130(51):17394-9. PubMed ID: 19053456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of a hydrogen bond/salt bridge network to the stability of secondary and tertiary structure in lambda repressor.
    Marqusee S; Sauer RT
    Protein Sci; 1994 Dec; 3(12):2217-25. PubMed ID: 7756981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing the thermodynamic stabilities of a related thermophilic and mesophilic enzyme.
    Beadle BM; Baase WA; Wilson DB; Gilkes NR; Shoichet BK
    Biochemistry; 1999 Feb; 38(8):2570-6. PubMed ID: 10029552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound ice-binding site of an antifreeze protein revealed by mutagenesis and fluorescent tagging.
    Garnham CP; Natarajan A; Middleton AJ; Kuiper MJ; Braslavsky I; Davies PL
    Biochemistry; 2010 Oct; 49(42):9063-71. PubMed ID: 20853841
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt bridge as a gatekeeper against partial unfolding.
    Hinzman MW; Essex ME; Park C
    Protein Sci; 2016 May; 25(5):999-1009. PubMed ID: 26916981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface salt bridges stabilize the GCN4 leucine zipper.
    Spek EJ; Bui AH; Lu M; Kallenbach NR
    Protein Sci; 1998 Nov; 7(11):2431-7. PubMed ID: 9828010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.