These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 17190270)
1. Lethality of shock pressures to a marine Vibrio sp. isolated from a ship's ballast water. Mimura H; Abe A; Katakura R; Kawasaki H; Yoshida K; Ishida H Biocontrol Sci; 2006 Dec; 11(4):159-66. PubMed ID: 17190270 [TBL] [Abstract][Full Text] [Related]
2. Changes of microbial populations in a ship's ballast water and sediments on a voyage from Japan to Qatar. Mimura H; Katakura R; Ishida H Mar Pollut Bull; 2005 Jul; 50(7):751-7. PubMed ID: 15993142 [TBL] [Abstract][Full Text] [Related]
3. Potential application of SMART II for Vibrio cholerae O1 and O139 detection in ship's ballast water. Chen A; Tamburri MN; Colwell RR; Huq A Mar Pollut Bull; 2018 Nov; 136():79-83. PubMed ID: 30509844 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of Vibrio sp. in pure cultures and mussel homogenates using high hydrostatic pressure. Vu TTT; Alter T; Braun PG; Dittrich AJ; Huehn S Lett Appl Microbiol; 2018 Sep; 67(3):220-225. PubMed ID: 29962033 [TBL] [Abstract][Full Text] [Related]
5. Association of bacteria with marine invertebrates: implications for ballast water management. Khandeparker L; Anil AC Ecohealth; 2013 Sep; 10(3):268-76. PubMed ID: 23846742 [TBL] [Abstract][Full Text] [Related]
6. Uptake and retention of Vibrio cholerae non-O1, Salmonella typhi, Escherichia coli and Vibrio harvey by mussels in seawater. Marino A; Crisafi G; Maugeri TL; Nostro A; Alonzo V New Microbiol; 1999 Apr; 22(2):129-38. PubMed ID: 10322612 [TBL] [Abstract][Full Text] [Related]
7. Effect of hydrostatic pressure on growth and viability of Vibrio parahaemolyticus. Schwarz JR; Colwell RR Appl Microbiol; 1974 Dec; 28(6):977-81. PubMed ID: 4451378 [TBL] [Abstract][Full Text] [Related]
8. Real-time PCR and NASBA for rapid and sensitive detection of Vibrio cholerae in ballast water. Fykse EM; Nilsen T; Nielsen AD; Tryland I; Delacroix S; Blatny JM Mar Pollut Bull; 2012 Feb; 64(2):200-6. PubMed ID: 22221710 [TBL] [Abstract][Full Text] [Related]
9. Hydrostatic pressure effects upon cellular leakage and active transport by Vibrio marinus. Masuda KV; Albright LJ Z Allg Mikrobiol; 1978; 18(10):731-40. PubMed ID: 753047 [TBL] [Abstract][Full Text] [Related]
11. Effectiveness and kinetics of ferrate as a disinfectant for ballast water. Jessen A; Randall A; Reinhart D; Daly L Water Environ Res; 2008 Jun; 80(6):561-9. PubMed ID: 18686931 [TBL] [Abstract][Full Text] [Related]
12. Inactivation of Vibrio parahaemolyticus in hard clams (Mercanaria mercanaria) by high hydrostatic pressure (HHP) and the effect of HHP on the physical characteristics of hard clam meat. Mootian GK; Flimlin GE; Karwe MV; Schaffner DW J Food Sci; 2013 Feb; 78(2):E251-7. PubMed ID: 23324022 [TBL] [Abstract][Full Text] [Related]
13. Fundamental study of sterilization effects on marine Vibrio sp. in a cylindrical water chamber with supply of only underwater shock waves. Wang J; Abe A; Wang Y; Huang C Ultrason Sonochem; 2018 Apr; 42():541-550. PubMed ID: 29429701 [TBL] [Abstract][Full Text] [Related]
14. Application of a paper based device containing a new culture medium to detect Vibrio cholerae in water samples collected in Haiti. Briquaire R; Colwell RR; Boncy J; Rossignol E; Dardy A; Pandini I; Villeval F; Machuron JL; Huq A; Rashed S; Vandevelde T; Rozand C J Microbiol Methods; 2017 Feb; 133():23-31. PubMed ID: 28007529 [TBL] [Abstract][Full Text] [Related]
15. Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis). Marino A; Lombardo L; Fiorentino C; Orlandella B; Monticelli L; Nostro A; Alonzo V Int J Food Microbiol; 2005 Apr; 99(3):281-6. PubMed ID: 15808362 [TBL] [Abstract][Full Text] [Related]
16. The relationship between membrane damage, release of protein and loss of viability in Escherichia coli exposed to high hydrostatic pressure. Klotz B; Mañas P; Mackey BM Int J Food Microbiol; 2010 Feb; 137(2-3):214-20. PubMed ID: 20042249 [TBL] [Abstract][Full Text] [Related]
17. The influence of hydrostatic pressure upon biochemical activities of heterotrophic bacteria. Albright LJ Can J Microbiol; 1975 Sep; 21(9):1406-12. PubMed ID: 1102073 [TBL] [Abstract][Full Text] [Related]
18. Survival of Vibrio spp. including inoculated V. cholerae 0139 during heat-treatment of cockles (Anadara granosa). Liew WS; Leisner JJ; Rusul G; Radu S; Rassip A Int J Food Microbiol; 1998 Jul; 42(3):167-73. PubMed ID: 9728687 [TBL] [Abstract][Full Text] [Related]
19. Effect of water treatment on the growth potential of Vibrio cholerae and Vibrio parahaemolyticus in seawater. Wennberg AC; Tryland I; Østensvik Ø; Secic I; Monshaugen M; Liltved H Mar Environ Res; 2013 Feb; 83():10-5. PubMed ID: 23127287 [TBL] [Abstract][Full Text] [Related]
20. Significance of Na+ in the fish pathogen, Vibrio anguillarum, under energy depleted condition. Fujiwara-Nagata E; Eguchi M FEMS Microbiol Lett; 2004 May; 234(1):163-7. PubMed ID: 15109735 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]