These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Heterogeneous populations of K+ channels mediate EDRF release to flow but not agonists in rabbit aorta. Hutcheson IR; Griffith TM Am J Physiol; 1994 Feb; 266(2 Pt 2):H590-6. PubMed ID: 7511348 [TBL] [Abstract][Full Text] [Related]
3. Contribution of K+ channels and ouabain-sensitive mechanisms to the endothelium-dependent relaxations of horse penile small arteries. Prieto D; Simonsen U; Hernández M; García-Sacristán A Br J Pharmacol; 1998 Apr; 123(8):1609-20. PubMed ID: 9605568 [TBL] [Abstract][Full Text] [Related]
5. Roles of calcium-activated and voltage-gated delayed rectifier potassium channels in endothelium-dependent vasorelaxation of the rabbit middle cerebral artery. Dong H; Waldron GJ; Cole WC; Triggle CR Br J Pharmacol; 1998 Mar; 123(5):821-32. PubMed ID: 9535009 [TBL] [Abstract][Full Text] [Related]
6. Barium inhibits the endothelium-dependent component of flow but not acetylcholine-induced relaxation in isolated rabbit cerebral arteries. Wellman GC; Bevan JA J Pharmacol Exp Ther; 1995 Jul; 274(1):47-53. PubMed ID: 7616433 [TBL] [Abstract][Full Text] [Related]
7. Apamin/charybdotoxin-sensitive endothelial K+ channels contribute to acetylcholine-induced, NO-dependent vasorelaxation of rat aorta. Qiu Y; Quilley J Med Sci Monit; 2001; 7(6):1129-36. PubMed ID: 11687720 [TBL] [Abstract][Full Text] [Related]
8. Interactions between endothelium-derived relaxing factors in the rat hepatic artery: focus on regulation of EDHF. Zygmunt PM; Plane F; Paulsson M; Garland CJ; Högestätt ED Br J Pharmacol; 1998 Jul; 124(5):992-1000. PubMed ID: 9692786 [TBL] [Abstract][Full Text] [Related]
9. Contributions of nitric oxide, EDHF, and EETs to endothelium-dependent relaxation in renal afferent arterioles. Wang D; Borrego-Conde LJ; Falck JR; Sharma KK; Wilcox CS; Umans JG Kidney Int; 2003 Jun; 63(6):2187-93. PubMed ID: 12753306 [TBL] [Abstract][Full Text] [Related]
10. Oxygen causes fetal pulmonary vasodilation through activation of a calcium-dependent potassium channel. Cornfield DN; Reeve HL; Tolarova S; Weir EK; Archer S Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8089-94. PubMed ID: 8755608 [TBL] [Abstract][Full Text] [Related]
11. Endothelium-dependent vasorelaxation independent of nitric oxide and K(+) release in isolated renal arteries of rats. Jiang F; Dusting GJ Br J Pharmacol; 2001 Apr; 132(7):1558-64. PubMed ID: 11264250 [TBL] [Abstract][Full Text] [Related]
12. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Edwards G; Dora KA; Gardener MJ; Garland CJ; Weston AH Nature; 1998 Nov; 396(6708):269-72. PubMed ID: 9834033 [TBL] [Abstract][Full Text] [Related]
13. Does potassium channel opening contribute to endothelium-dependent relaxation in human internal thoracic artery? Hamilton CA; Berg G; McArthur K; Reid JL; Dominiczak AF Clin Sci (Lond); 1999 Jun; 96(6):631-8. PubMed ID: 10334969 [TBL] [Abstract][Full Text] [Related]
14. The role of NO-cGMP pathway and potassium channels on the relaxation induced by clonidine in the rat mesenteric arterial bed. Pimentel AM; Costa CA; Carvalho LC; Brandão RM; Rangel BM; Tano T; Soares de Moura R; Resende AC Vascul Pharmacol; 2007 May; 46(5):353-9. PubMed ID: 17258511 [TBL] [Abstract][Full Text] [Related]
15. Endothelium-dependent relaxation is resistant to inhibition of nitric oxide synthesis, but sensitive to blockade of calcium-activated potassium channels in essential hypertension. Sainsbury CA; Coleman J; Brady AJ; Connell JM; Hillier C; Petrie JR J Hum Hypertens; 2007 Oct; 21(10):808-14. PubMed ID: 17508013 [TBL] [Abstract][Full Text] [Related]
16. Endothelium-derived hyperpolarizing factor but not NO reduces smooth muscle Ca2+ during acetylcholine-induced dilation of microvessels. Bolz SS; de Wit C; Pohl U Br J Pharmacol; 1999 Sep; 128(1):124-34. PubMed ID: 10498843 [TBL] [Abstract][Full Text] [Related]
17. Endothelial beta3-adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium-dependent hyperpolarization. Dessy C; Moniotte S; Ghisdal P; Havaux X; Noirhomme P; Balligand JL Circulation; 2004 Aug; 110(8):948-54. PubMed ID: 15302798 [TBL] [Abstract][Full Text] [Related]
18. Further investigation of endothelium-derived hyperpolarizing factor (EDHF) in rat hepatic artery: studies using 1-EBIO and ouabain. Edwards G; Gardener MJ; Feletou M; Brady G; Vanhoutte PM; Weston AH Br J Pharmacol; 1999 Nov; 128(5):1064-70. PubMed ID: 10556944 [TBL] [Abstract][Full Text] [Related]
19. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin-sensitive K channel by cGMP-dependent protein kinase. Archer SL; Huang JM; Hampl V; Nelson DP; Shultz PJ; Weir EK Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7583-7. PubMed ID: 7519783 [TBL] [Abstract][Full Text] [Related]
20. Enhanced role of K+ channels in relaxations of hypercholesterolemic rabbit carotid artery to NO. Najibi S; Cohen RA Am J Physiol; 1995 Sep; 269(3 Pt 2):H805-11. PubMed ID: 7573521 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]