BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 17190297)

  • 1. Threaded versus porous-surfaced implants as anchorage units for orthodontic treatment: three-dimensional finite element analysis of peri-implant bone tissue stresses.
    Pilliar RM; Sagals G; Meguid SA; Oyonarte R; Deporter DA
    Int J Oral Maxillofac Implants; 2006; 21(6):879-89. PubMed ID: 17190297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomechanical analysis of peri-prosthetic bone response to hybrid threaded zirconia dental implants: An in silico model.
    Mishra D; Basu B
    J Mech Behav Biomed Mater; 2024 Feb; 150():106310. PubMed ID: 38128471
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomechanical Effects of Various Bone-Implant Interfaces on the Stability of Orthodontic Miniscrews: A Finite Element Study.
    Tan F; Wang C; Yang C; Huang Y; Fan Y
    J Healthc Eng; 2017; 2017():7495606. PubMed ID: 29065641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Implant Strength Contributes to the Osseointegration Strength of Porous Metallic Materials.
    Mathey E; Pelletier MH; Walsh WR; Gall K; Carpenter D
    J Biomech Eng; 2024 Oct; 146(10):. PubMed ID: 38668718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design and ex vivo characterization of narrow implants with custom piezo-activated osteotomy for patients with substantial bone loss.
    Wirz H; Teufelhart S; McBeth C; Gyurko R; Dibart S; Sauer-Budge A
    Clin Exp Dent Res; 2020 Jun; 6(3):336-344. PubMed ID: 32558317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of rough micro-threaded and laser micro-textured implant-neck on peri-implant tissues: A systematic review.
    Huraib WM; Pullishery F; Al-Ghalib TA; Niyazi AAT; Binhuraib H; El Homossany M; Bamigdad MS
    Saudi Dent J; 2023 Sep; 35(6):602-613. PubMed ID: 37817785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Strain and Insertion Torque of Mini-implants at 90° and 45° Angulations on a Bone Model using Three-Dimensional Finite Element Analysis.
    Xavier J; Sarika K; Ajith VV; Sapna Varma NK
    Contemp Clin Dent; 2023; 14(1):25-31. PubMed ID: 37249992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preventing stress singularities in peri-implant bone - a finite element analysis using a graded bone model.
    Roffmann O; Stiesch M; Greuling A
    Comput Methods Biomech Biomed Engin; 2024 Apr; 27(5):547-557. PubMed ID: 36942632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomechanical Analysis of Axial Gradient Porous Dental Implants: A Finite Element Analysis.
    Zhang C; Wang Y
    J Funct Biomater; 2023 Nov; 14(12):. PubMed ID: 38132811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of stress distribution in fully porous and dense-core porous scaffolds in dental implantation.
    Hosseini SA; Katoozian HR
    J Mech Behav Biomed Mater; 2024 Aug; 156():106602. PubMed ID: 38805873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preoperative assessment of treatment planning on minimization of micro-movement during healing period of immediate-loaded implants using X-ray CT data-based simulation.
    Kimura K; Fukase Y; Makino M; Masaki C; Nakamoto T; Hosokawa R
    J Oral Implantol; 2010 Jun; ():. PubMed ID: 20557149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Porous versus solid shoulder implants in humeri of different bone densities: A finite element analysis.
    Hitchon S; Soltanmohammadi P; Milner JS; Holdsworth D; Willing R
    J Orthop Res; 2024 Mar; ():. PubMed ID: 38520665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bone remodelling prediction using mechanical stimulus with bone connectivity theory in porous implants.
    Zou Z; Cheong VS; Fromme P
    J Mech Behav Biomed Mater; 2024 May; 153():106463. PubMed ID: 38401186
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of the mechanical response of novel swelling bone implants in polyurethane foams.
    Sadighi A; Taghvaei M; Taheri M; Oeth D; Siegler S; Schaer TP; R Najafi A
    J Mech Behav Biomed Mater; 2023 Jul; 143():105871. PubMed ID: 37187154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Failure rates and factors associated with infrazygomatic crestal orthodontic implants - A prospective study.
    Gill G; Shashidhar K; Kuttappa MN; Kushalappa P B D; Sivamurthy G; Mallick S
    J Oral Biol Craniofac Res; 2023; 13(2):283-289. PubMed ID: 36880016
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development and validation of a parametric human mandible model to determine internal stresses for the future design optimization of maxillofacial implants.
    Wieja F; Jacobs G; Stein S; Kopp A; van Gaalen K; Kröger N; Zinser M
    J Mech Behav Biomed Mater; 2022 Jan; 125():104893. PubMed ID: 34715640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Healing Pattern Analysis for Dental Implants Using the Mechano-Regulatory Tissue Differentiation Model.
    Li MJ; Kung PC; Chang YW; Tsou NT
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33276683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-automated generation of bone loss defects around dental implants and its application in finite element analysis.
    Jemaa H; Eisenburger M; Greuling A
    Comput Methods Biomech Biomed Engin; 2023 Sep; ():1-12. PubMed ID: 37706465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro finite element analysis of continuously loaded mini-implants - A micro-CT study in the rat tail model.
    Kerberger R; Brunello G; Drescher D; van Rietbergen B; Becker K
    Bone; 2023 Dec; 177():116912. PubMed ID: 37739299
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fatigue life of 3D-printed porous titanium dental implants predicted by validated finite element simulations.
    Vautrin A; Aw J; Attenborough E; Varga P
    Front Bioeng Biotechnol; 2023; 11():1240125. PubMed ID: 37636001
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.