BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17190851)

  • 61. Prediction of deleterious nonsynonymous single-nucleotide polymorphism for human diseases.
    Wu J; Jiang R
    ScientificWorldJournal; 2013; 2013():675851. PubMed ID: 23431257
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study.
    Coelho C; Muthukumaran J; Santos-Silva T; João Romão M
    Pharmacol Res Perspect; 2019 Dec; 7(6):e00538. PubMed ID: 31768259
    [TBL] [Abstract][Full Text] [Related]  

  • 63.
    Yazar M; Özbek P
    OMICS; 2021 Jan; 25(1):23-37. PubMed ID: 33058752
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Combination use of protein-protein interaction network topological features improves the predictive scores of deleterious non-synonymous single-nucleotide polymorphisms.
    Wu Y; Jing R; Jiang L; Jiang Y; Kuang Q; Ye L; Yang L; Li Y; Li M
    Amino Acids; 2014 Aug; 46(8):2025-35. PubMed ID: 24849655
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Functional non-synonymous polymorphisms prediction methods: current approaches and future developments.
    González-Castejón M; Marín F; Soler-Rivas C; Reglero G; Visioli F; Rodríguez-Casado A
    Curr Med Chem; 2011; 18(33):5095-103. PubMed ID: 22050757
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Computational investigation of pathogenic nsSNPs in CEP63 protein.
    Kumar A; Purohit R
    Gene; 2012 Jul; 503(1):75-82. PubMed ID: 22555018
    [TBL] [Abstract][Full Text] [Related]  

  • 67. The human mitochondrial transport/carrier protein family. Nonsynonymous single nucleotide polymorphisms (nsSNPs) and mutations that lead to human diseases.
    Wohlrab H
    Biochim Biophys Acta; 2006; 1757(9-10):1263-70. PubMed ID: 16843431
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Identification of disease-related nsSNPs via the integration of protein sequence features and domain-domain interaction data.
    Jiang R; Gan M; Wu J
    Int J Comput Biol Drug Des; 2012; 5(3-4):206-21. PubMed ID: 23013650
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In Silico Analysis of Coding/Noncoding SNPs of Human
    Elkhattabi L; Morjane I; Charoute H; Amghar S; Bouafi H; Elkarhat Z; Saile R; Rouba H; Barakat A
    J Diabetes Res; 2019; 2019():4951627. PubMed ID: 31236417
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Hansa: an automated method for discriminating disease and neutral human nsSNPs.
    Acharya V; Nagarajaram HA
    Hum Mutat; 2012 Feb; 33(2):332-7. PubMed ID: 22045683
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Accounting for human polymorphisms predicted to affect protein function.
    Ng PC; Henikoff S
    Genome Res; 2002 Mar; 12(3):436-46. PubMed ID: 11875032
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Modeling effects of human single nucleotide polymorphisms on protein-protein interactions.
    Teng S; Madej T; Panchenko A; Alexov E
    Biophys J; 2009 Mar; 96(6):2178-88. PubMed ID: 19289044
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Structural interactomics: informatics approaches to aid the interpretation of genetic variation and the development of novel therapeutics.
    Lee S; Brown A; Pitt WR; Higueruelo AP; Gong S; Bickerton GR; Schreyer A; Tanramluk D; Baylay A; Blundell TL
    Mol Biosyst; 2009 Dec; 5(12):1456-72. PubMed ID: 19763326
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Proteome-wide survey of phosphorylation patterns affected by nuclear DNA polymorphisms in Arabidopsis thaliana.
    Riaño-Pachón DM; Kleessen S; Neigenfind J; Durek P; Weber E; Engelsberger WR; Walther D; Selbig J; Schulze WX; Kersten B
    BMC Genomics; 2010 Jul; 11():411. PubMed ID: 20594336
    [TBL] [Abstract][Full Text] [Related]  

  • 75. In silico Analysis Revealed High-risk Single Nucleotide Polymorphisms in Human Pentraxin-3 Gene and their Impact on Innate Immune Response against Microbial Pathogens.
    Thakur R; Shankar J
    Front Microbiol; 2016; 7():192. PubMed ID: 26941719
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Functional Analysis of Single Nucleotide Polymorphism in ZUFSP Protein and Implication in Pathogenesis.
    Ajadi MB; Soremekun OS; Adewumi AT; Kumalo HM; Soliman MES
    Protein J; 2021 Feb; 40(1):28-40. PubMed ID: 33512633
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Detection of damaging nsSNPs on human caspase-cascades related to apoptotic signalling pathway.
    Tomar J; Gera VK; Chakraborty C
    Protein Pept Lett; 2013 Sep; 20(9):982-97. PubMed ID: 22630344
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of hub glycogenes and their nsSNP analysis from mouse RNA-Seq data.
    Firoz A; Malik A; Singh SK; Jha V; Ali A
    Gene; 2015 Dec; 574(2):235-46. PubMed ID: 26260015
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Deleterious nonsynonymous single nucleotide polymorphisms in human solute carriers: the first comparison of three prediction methods.
    Hao DC; Xiao B; Xiang Y; Dong XW; Xiao PG
    Eur J Drug Metab Pharmacokinet; 2013 Mar; 38(1):53-62. PubMed ID: 22555822
    [TBL] [Abstract][Full Text] [Related]  

  • 80. DAMpred: Recognizing Disease-Associated nsSNPs through Bayes-Guided Neural-Network Model Built on Low-Resolution Structure Prediction of Proteins and Protein-Protein Interactions.
    Quan L; Wu H; Lyu Q; Zhang Y
    J Mol Biol; 2019 Jun; 431(13):2449-2459. PubMed ID: 30796987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.