These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 1719122)

  • 1. Calcium regulation of epidermal cell differentiation in the frog Xenopus laevis.
    Shimizu-Nishikawa K; Miller L
    J Exp Zool; 1991 Nov; 260(2):165-9. PubMed ID: 1719122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific alterations in keratin biosynthesis in mouse epidermis in vivo and in explant culture following a single exposure to the tumor promoter 12-O-tetradecanoylphorbol-13-acetate.
    Molloy CJ; Laskin JD
    Cancer Res; 1987 Sep; 47(17):4674-80. PubMed ID: 2441853
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Markers of epidermal differentiation expressed by rat keratinocytes cultured by a modified feeder layer technique.
    Gibson WT; Scott IR; Saunders HJ; Brunskill JE; Harding CR
    Eur J Cell Biol; 1984 Jan; 33(1):75-83. PubMed ID: 6199206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epidermal differentiation and keratin gene expression.
    Fuchs E
    Princess Takamatsu Symp; 1994; 24():290-302. PubMed ID: 8983083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium-mediated regulation of the low density lipoprotein receptor and intracellular cholesterol synthesis in human epidermal keratinocytes.
    Ponec M; Havekes L; Kempenaar J; Lavrijsen S; Wijsman M; Boonstra J; Vermeer BJ
    J Cell Physiol; 1985 Oct; 125(1):98-106. PubMed ID: 2413059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upregulation of AP-2 in the skin of Xenopus laevis during thyroid hormone-induced metamorphosis.
    French RP; Warshawsky D; Tybor L; Mylniczenko ND; Miller L
    Dev Genet; 1994; 15(4):356-65. PubMed ID: 7523015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and immunocytochemical characterization of keratinization in vertebrate epidermis and epidermal derivatives.
    Alibardi L
    Int Rev Cytol; 2006; 253():177-259. PubMed ID: 17098057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental induction of differentiation-specific keratins in malignant mouse keratinocyte lines.
    Breitkreutz D; Hornung J; Pöhlmann J; Brown-Bierman L; Bohnert A; Bowden PE; Fusenig NE
    Eur J Cell Biol; 1986 Dec; 42(2):255-67. PubMed ID: 2434329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Factors influencing calcium-induced terminal differentiation in cultured mouse epidermal cells.
    Hennings H; Holbrook KA; Yuspa SH
    J Cell Physiol; 1983 Sep; 116(3):265-81. PubMed ID: 6885930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Growth and differentiation of adult Mongolian gerbil epidermal cells in culture.
    Guzmán-Silva MA
    Acta Cient Venez; 1997; 48(3):130-3. PubMed ID: 9640672
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tight junction regulates epidermal calcium ion gradient and differentiation.
    Kurasawa M; Maeda T; Oba A; Yamamoto T; Sasaki H
    Biochem Biophys Res Commun; 2011 Mar; 406(4):506-11. PubMed ID: 21329672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vitamin C enhances differentiation of a continuous keratinocyte cell line (REK) into epidermis with normal stratum corneum ultrastructure and functional permeability barrier.
    Pasonen-Seppänen S; Suhonen TM; Kirjavainen M; Suihko E; Urtti A; Miettinen M; Hyttinen M; Tammi M; Tammi R
    Histochem Cell Biol; 2001 Oct; 116(4):287-97. PubMed ID: 11702187
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of long-term retinoic acid treatment on epidermal differentiation in vivo: specific modifications in the programme of terminal differentiation.
    Eichner R; Gendimenico GJ; Kahn M; Mallon JP; Capetola RJ; Mezick JA
    Br J Dermatol; 1996 Nov; 135(5):687-95. PubMed ID: 8977666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Commitment of embryonic stem cells to an epidermal cell fate and differentiation in vitro.
    Troy TC; Turksen K
    Dev Dyn; 2005 Feb; 232(2):293-300. PubMed ID: 15614782
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metamorphosis-dependent transcriptional regulation of xak-c, a novel Xenopus type I keratin gene.
    Watanabe Y; Tanaka R; Kobayashi H; Utoh R; Suzuki K; Obara M; Yoshizato K
    Dev Dyn; 2002 Dec; 225(4):561-70. PubMed ID: 12454932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitors of the intracellular Ca(2+)-ATPase in cultured mouse keratinocytes reveal components of terminal differentiation that are regulated by distinct intracellular Ca2+ compartments.
    Li L; Tucker RW; Hennings H; Yuspa SH
    Cell Growth Differ; 1995 Sep; 6(9):1171-84. PubMed ID: 8519694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro differentiation of a homogeneous cell population--the epidermis of Xenopus laevis.
    Reeves OR; Laskey RA
    J Embryol Exp Morphol; 1975 Aug; 34(1):75-92. PubMed ID: 1237533
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vitro characteristics of early epidermal progenitors isolated from keratin 14 (K14)-deficient mice: insights into the role of keratin 17 in mouse keratinocytes.
    Troy TC; Turksen K
    J Cell Physiol; 1999 Sep; 180(3):409-21. PubMed ID: 10430181
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epidermal expression of the full-length extracellular calcium-sensing receptor is required for normal keratinocyte differentiation.
    Komuves L; Oda Y; Tu CL; Chang WH; Ho-Pao CL; Mauro T; Bikle DD
    J Cell Physiol; 2002 Jul; 192(1):45-54. PubMed ID: 12115735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of strontium to separate calcium-dependent pathways for proliferation and differentiation in human keratinocytes.
    Praeger FC; Stanulis-Praeger BM; Gilchrest BA
    J Cell Physiol; 1987 Jul; 132(1):81-9. PubMed ID: 2439523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.