These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 17191903)

  • 21. Micellar electrokinetic chromatography method for the determination of several natural red dyestuff and lake pigments used in art work.
    Maguregui MI; Alonso RM; Barandiaran M; Jimenez RM; García N
    J Chromatogr A; 2007 Jun; 1154(1-2):429-36. PubMed ID: 17452040
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Chemical constituents from Hedyotis diffusa].
    Huang WH; Li YB; Jiang JQ
    Zhongguo Zhong Yao Za Zhi; 2008 Mar; 33(5):524-6. PubMed ID: 18536374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso.
    Georges K; Jayaprakasam B; Dalavoy SS; Nair MG
    Bioresour Technol; 2008 Apr; 99(6):2037-45. PubMed ID: 17478091
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biologically active compounds of fungal origin displaying antitumor activity.
    Sułkowska-Ziaja K; Muszyńska B; Końska G
    Acta Pol Pharm; 2005; 62(2):153-9. PubMed ID: 16161358
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hypalocrinins, Taurine-Conjugated Anthraquinone and Biaryl Pigments from the Deep Sea Crinoid Hypalocrinus naresianus.
    Wolkenstein K; Fuentes-Monteverde JC; Nath N; Oji T; Griesinger C
    J Nat Prod; 2019 Jan; 82(1):163-167. PubMed ID: 30596488
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemical constituents of Rubia tibetica Hook. f. from Tibetan medicine and cytotoxic activity evaluation.
    Gu MM; Li Q; Zhang Y; Wu HW; Shao YL; Han HP; Liao ZX
    Fitoterapia; 2024 Jun; 175():105961. PubMed ID: 38626855
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Isolation and study of the biological properties of a protease biosynthesis stimulating factor in an associative fungal culture].
    Buiak LI; Landau NS; Kolesnikov MP; Egorov NS
    Mikrobiologiia; 1983; 52(5):750-4. PubMed ID: 6363889
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quinone derivatives from the genus Rubia and their bioactivities.
    Xu K; Wang P; Wang L; Liu C; Xu S; Cheng Y; Wang Y; Li Q; Lei H
    Chem Biodivers; 2014 Mar; 11(3):341-63. PubMed ID: 24634067
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization and antimicrobial evaluation of anthraquinones and triterpenes from
    Chandrasekhar G; Shukla M; Kaul G; K R; Chopra S; Pandey R
    J Asian Nat Prod Res; 2023 Nov; 25(11):1110-1116. PubMed ID: 37010931
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The natural constituents of historical textile dyes.
    Ferreira ES; Hulme AN; McNab H; Quye A
    Chem Soc Rev; 2004 Jul; 33(6):329-36. PubMed ID: 15280965
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noninvasive Characterization and Quantification of Anthraquinones in Dyed Woolen Threads by Visible Diffuse Reflectance Spectroscopy.
    Chavanne C; Troalen LG; Fronty IB; Buléon P; Walter P
    Anal Chem; 2022 May; 94(21):7674-7682. PubMed ID: 35584233
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Performance of mango seed adsorbents in the adsorption of anthraquinone and azo acid dyes in single and binary aqueous solutions.
    Dávila-Jiménez MM; Elizalde-González MP; Hernández-Montoya V
    Bioresour Technol; 2009 Dec; 100(24):6199-206. PubMed ID: 19692231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anthraquinones from Ophiorrhiza hayatana OHWI.
    Chan HH; Li CY; Damu AG; Wu TS
    Chem Pharm Bull (Tokyo); 2005 Oct; 53(10):1232-5. PubMed ID: 16204975
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipoxygenase inhibitory constituents from rhubarb.
    Ngoc TM; Minh PT; Hung TM; Thuong PT; Lee I; Min BS; Bae K
    Arch Pharm Res; 2008 May; 31(5):598-605. PubMed ID: 18481015
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering high yields of secondary metabolites in Rubia cell cultures through transformation with rol genes.
    Bulgakov VP; Shkryl YN; Veremeichik GN
    Methods Mol Biol; 2010; 643():229-42. PubMed ID: 20552455
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli.
    Shkryl YN; Veremeichik GN; Bulgakov VP; Tchernoded GK; Mischenko NP; Fedoreyev SA; Zhuravlev YN
    Biotechnol Bioeng; 2008 May; 100(1):118-25. PubMed ID: 18023060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Studies on chemical constituents of Eleutherine americana].
    Liu XJ; Yan XQ; Wang NL
    Zhong Yao Cai; 2009 Jan; 32(1):55-8. PubMed ID: 19445121
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Six new anthraquinone glycosides from
    Liu X; Li T; Liu Y; Liu H; Chen X; Ming J; Lai X; Li B
    Nat Prod Res; 2021 Aug; 35(15):2535-2543. PubMed ID: 31698945
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An effective high-speed countercurrent chromatographic method for preparative isolation and purification of mollugin directly from the ethanol extract of the Chinese medicinal plant Rubia cordifolia.
    Lu Y; Liu R; Sun C; Pan Y
    J Sep Sci; 2007 Jun; 30(9):1313-7. PubMed ID: 17623473
    [TBL] [Abstract][Full Text] [Related]  

  • 40. TLC-MS-Bioautographic Identification of Antityrosinase Compounds and Preparation of a Topical Gel Formulation from a Bioactive Fraction of an RSM-Optimized Alcoholic Extract of Rubia Cordifolia L. stem.
    Insaf A; Parveen R; Srivastava V; Samal M; Khan M; Ahmad S
    J AOAC Int; 2023 Nov; 106(6):1598-1607. PubMed ID: 37471690
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.