These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Theoretical study for regulatory property of scaffold protein on MAPK cascade: a qualitative modeling. Yi M; Xia K; Zhan M Biophys Chem; 2010 Apr; 147(3):130-9. PubMed ID: 20153099 [TBL] [Abstract][Full Text] [Related]
4. Concentration-dependent effects on the rapid and efficient activation of the MAP kinase signaling cascade. Schwacke JH; Voit EO Proteomics; 2007 Mar; 7(6):890-9. PubMed ID: 17370267 [TBL] [Abstract][Full Text] [Related]
6. Compensation effect of the MAPK cascade on formation of phospho-protein gradients. Naka T; Hatakeyama M; Sakamoto N; Konagaya A Biosystems; 2006; 83(2-3):167-77. PubMed ID: 16236425 [TBL] [Abstract][Full Text] [Related]
7. Cellular automata modelling of biomolecular networks dynamics. Bonchev D; Thomas S; Apte A; Kier LB SAR QSAR Environ Res; 2010 Jan; 21(1):77-102. PubMed ID: 20373215 [TBL] [Abstract][Full Text] [Related]
8. The ERK cascade as a prototype of MAPK signaling pathways. Rubinfeld H; Seger R Methods Mol Biol; 2004; 250():1-28. PubMed ID: 14755077 [No Abstract] [Full Text] [Related]
9. A theoretical modeling for frequency modulation of Ca(2+) signal on activation of MAPK cascade. Yi M; Zhao Q; Tang J; Wang C Biophys Chem; 2011 Aug; 157(1-3):33-42. PubMed ID: 21550710 [TBL] [Abstract][Full Text] [Related]
10. Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. Conradi C; Flockerzi D; Raisch J Math Biosci; 2008 Jan; 211(1):105-31. PubMed ID: 18068199 [TBL] [Abstract][Full Text] [Related]
11. Robust global sensitivity in multiple enzyme cascade system explains how the downstream cascade structure may remain unaffected by cross-talk. Mutalik VK; Singh AP; Edwards JS; Venkatesh KV FEBS Lett; 2004 Jan; 558(1-3):79-84. PubMed ID: 14759520 [TBL] [Abstract][Full Text] [Related]
12. Scaffold proteins in MAP kinase signaling: more than simple passive activating platforms. Dard N; Peter M Bioessays; 2006 Feb; 28(2):146-56. PubMed ID: 16435292 [TBL] [Abstract][Full Text] [Related]
13. Robustness and dissipation of mitogen-activated protein kinases signal transduction network: underlying funneled landscape against stochastic fluctuations. Wang J; Zhang K; Wang E J Chem Phys; 2008 Oct; 129(13):135101. PubMed ID: 19045124 [TBL] [Abstract][Full Text] [Related]
15. Differential regulation and properties of MAPKs. Raman M; Chen W; Cobb MH Oncogene; 2007 May; 26(22):3100-12. PubMed ID: 17496909 [TBL] [Abstract][Full Text] [Related]
16. [The role of extracellular signal-regulated kinase/mitogen-activated protein kinase pathway in multidrug resistance of hepatocellular carcinoma]. Zhu H; Chen XP; Luo SF; Guan J; Zhang WG; Zhang BX; Mao CP Zhonghua Wai Ke Za Zhi; 2007 Jul; 45(13):917-20. PubMed ID: 17953842 [TBL] [Abstract][Full Text] [Related]
17. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Friday BB; Adjei AA Clin Cancer Res; 2008 Jan; 14(2):342-6. PubMed ID: 18223206 [TBL] [Abstract][Full Text] [Related]
19. Structural and dynamical analyses of the kinase network derived from the transpath database. Binder B; Heinrich R Genome Inform; 2005; 16(1):164-73. PubMed ID: 16362919 [TBL] [Abstract][Full Text] [Related]
20. Cell-specific activation profile of extracellular signal-regulated kinase 1/2, Jun N-terminal kinase, and p38 mitogen-activated protein kinases in asthmatic airways. Liu W; Liang Q; Balzar S; Wenzel S; Gorska M; Alam R J Allergy Clin Immunol; 2008 Apr; 121(4):893-902.e2. PubMed ID: 18395552 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]