These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 17192409)
21. Relationship between cell morphology and intracellular potassium concentration in Candida albicans. Watanabe H; Azuma M; Igarashi K; Ooshima H J Antibiot (Tokyo); 2006 May; 59(5):281-7. PubMed ID: 16883777 [TBL] [Abstract][Full Text] [Related]
22. A Metabolic Checkpoint for the Yeast-to-Hyphae Developmental Switch Regulated by Endogenous Nitric Oxide Signaling. Koch B; Barugahare AA; Lo TL; Huang C; Schittenhelm RB; Powell DR; Beilharz TH; Traven A Cell Rep; 2018 Nov; 25(8):2244-2258.e7. PubMed ID: 30463019 [TBL] [Abstract][Full Text] [Related]
23. Vesely EM; Williams RB; Konopka JB; Lorenz MC mSphere; 2017; 2(5):. PubMed ID: 28904994 [TBL] [Abstract][Full Text] [Related]
24. Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. Zheng X; Wang Y; Wang Y EMBO J; 2004 Apr; 23(8):1845-56. PubMed ID: 15071502 [TBL] [Abstract][Full Text] [Related]
25. The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. Li CR; Wang YM; De Zheng X; Liang HY; Tang JC; Wang Y J Cell Sci; 2005 Jun; 118(Pt 12):2637-48. PubMed ID: 15914538 [TBL] [Abstract][Full Text] [Related]
26. N-acetylglucosamine increases symptoms and fungal burden in a murine model of oral candidiasis. Ishijima SA; Hayama K; Takahashi M; Holmes AR; Cannon RD; Abe S Med Mycol; 2012 Apr; 50(3):252-8. PubMed ID: 21859389 [TBL] [Abstract][Full Text] [Related]
27. Candida tropicalis RON1 is required for hyphal formation, biofilm development, and virulence but is dispensable for N-acetylglucosamine catabolism. Song YD; Hsu CC; Lew SQ; Lin CH Med Mycol; 2021 Apr; 59(4):379-391. PubMed ID: 32712662 [TBL] [Abstract][Full Text] [Related]
28. 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. Lim CS; Wong WF; Rosli R; Ng KP; Seow HF; Chong PP J Basic Microbiol; 2009 Dec; 49(6):579-83. PubMed ID: 19810039 [TBL] [Abstract][Full Text] [Related]
30. Rbt1 protein domains analysis in Candida albicans brings insights into hyphal surface modifications and Rbt1 potential role during adhesion and biofilm formation. Monniot C; Boisramé A; Da Costa G; Chauvel M; Sautour M; Bougnoux ME; Bellon-Fontaine MN; Dalle F; d'Enfert C; Richard ML PLoS One; 2013; 8(12):e82395. PubMed ID: 24349274 [TBL] [Abstract][Full Text] [Related]
31. Roles of Candida albicans Sfl1 in hyphal development. Li Y; Su C; Mao X; Cao F; Chen J Eukaryot Cell; 2007 Nov; 6(11):2112-21. PubMed ID: 17715361 [TBL] [Abstract][Full Text] [Related]
32. Phr1p, a glycosylphosphatidylinsitol-anchored β(1,3)-glucanosyltransferase critical for hyphal wall formation, localizes to the apical growth sites and septa in Candida albicans. Ragni E; Calderon J; Fascio U; Sipiczki M; Fonzi WA; Popolo L Fungal Genet Biol; 2011 Aug; 48(8):793-805. PubMed ID: 21601645 [TBL] [Abstract][Full Text] [Related]
33. Regulation of the Cdc42/Cdc24 GTPase module during Candida albicans hyphal growth. Bassilana M; Hopkins J; Arkowitz RA Eukaryot Cell; 2005 Mar; 4(3):588-603. PubMed ID: 15755921 [TBL] [Abstract][Full Text] [Related]
34. Hyphal induction in the human fungal pathogen Candida albicans reveals a characteristic wall protein profile. Heilmann CJ; Sorgo AG; Siliakus AR; Dekker HL; Brul S; de Koster CG; de Koning LJ; Klis FM Microbiology (Reading); 2011 Aug; 157(Pt 8):2297-2307. PubMed ID: 21602216 [TBL] [Abstract][Full Text] [Related]
35. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Caballero-Lima D; Sudbery PE Mol Biol Cell; 2014 Apr; 25(7):1097-110. PubMed ID: 24501427 [TBL] [Abstract][Full Text] [Related]
36. The Flo8 transcription factor is essential for hyphal development and virulence in Candida albicans. Cao F; Lane S; Raniga PP; Lu Y; Zhou Z; Ramon K; Chen J; Liu H Mol Biol Cell; 2006 Jan; 17(1):295-307. PubMed ID: 16267276 [TBL] [Abstract][Full Text] [Related]
37. Quantitative proteomics and metabolomics approaches to demonstrate N-acetyl-D-glucosamine inducible amino acid deprivation response as morphological switch in Candida albicans. Kamthan M; Mukhopadhyay G; Chakraborty N; Chakraborty S; Datta A Fungal Genet Biol; 2012 May; 49(5):369-78. PubMed ID: 22406769 [TBL] [Abstract][Full Text] [Related]
38. Boric acid destabilizes the hyphal cytoskeleton and inhibits invasive growth of Candida albicans. Pointer BR; Boyer MP; Schmidt M Yeast; 2015 Apr; 32(4):389-98. PubMed ID: 25612315 [TBL] [Abstract][Full Text] [Related]
39. ABG1, a novel and essential Candida albicans gene encoding a vacuolar protein involved in cytokinesis and hyphal branching. Veses V; Casanova M; Murgui A; Domínguez A; Gow NA; Martínez JP Eukaryot Cell; 2005 Jun; 4(6):1088-101. PubMed ID: 15947201 [TBL] [Abstract][Full Text] [Related]
40. Identification and characterization of the genes for N-acetylglucosamine kinase and N-acetylglucosamine-phosphate deacetylase in the pathogenic fungus Candida albicans. Yamada-Okabe T; Sakamori Y; Mio T; Yamada-Okabe H Eur J Biochem; 2001 Apr; 268(8):2498-505. PubMed ID: 11298769 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]