These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 17192574)

  • 1. Thymus-dependent T cell tolerance of neuroendocrine functions: principles, reflections, and implications for tolerogenic/negative self-vaccination.
    Geenen V
    Ann N Y Acad Sci; 2006 Nov; 1088():284-96. PubMed ID: 17192574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thymic T-cell tolerance of neuroendocrine functions: physiology and pathophysiology.
    Geenen V; Kecha O; Brilot F; Hansenne I; Renard C; Martens H
    Cell Mol Biol (Noisy-le-grand); 2001 Feb; 47(1):179-88. PubMed ID: 11292253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thymic self-antigens for the design of a negative/tolerogenic self-vaccination against type 1 diabetes.
    Geenen V; Mottet M; Dardenne O; Kermani H; Martens H; Francois JM; Galleni M; Hober D; Rahmouni S; Moutschen M
    Curr Opin Pharmacol; 2010 Aug; 10(4):461-72. PubMed ID: 20434402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The thymic insulin-like growth factor axis: involvement in physiology and disease.
    Geenen V
    Horm Metab Res; 2003; 35(11-12):656-63. PubMed ID: 14710343
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of the thymus in the development of tolerance and autoimmunity towards the neuroendocrine system.
    Geenen V; Brilot F
    Ann N Y Acad Sci; 2003 May; 992():186-95. PubMed ID: 12794058
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An insulin-like growth factor 2-derived self-antigen inducing a regulatory cytokine profile after presentation to peripheral blood mononuclear cells from DQ8+ type 1 diabetic adolescents: preliminary design of a thymus-based tolerogenic self-vaccination.
    Geenen V; Louis C; Martens H
    Ann N Y Acad Sci; 2004 Dec; 1037():59-64. PubMed ID: 15699493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of the thymus in the integrated evolution of the recombinase-dependent adaptive immune response and the neuroendocrine system.
    Mottet M; Goffinet L; Beckers A; Bodart G; Morrhaye G; Kermani H; Renard C; Martens H; Geenen V
    Neuroimmunomodulation; 2011; 18(5):314-9. PubMed ID: 21952683
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymic transcription of neurohypophysial and insulin-related genes: impact upon T-cell differentiation and self-tolerance.
    Hansenne I
    J Neuroendocrinol; 2005 May; 17(5):321-7. PubMed ID: 15869568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Presentation of neuroendocrine self in the thymus: a necessity for integrated evolution of the immune and neuroendocrine systems.
    Geenen V
    Ann N Y Acad Sci; 2012 Jul; 1261():42-8. PubMed ID: 22823392
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The thymic repertoire of neuroendocrine-related self antigens: biological role in T-cell selection and pharmacological implications.
    Geenen V; Kecha O; Brilot F; Charlet-Renard C; Martens H
    Neuroimmunomodulation; 1999; 6(1-2):115-25. PubMed ID: 9876242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [The central role of the thymus in the education of T cells to neuroendocrine principles].
    Geenen V
    Verh K Acad Geneeskd Belg; 1993; 55(1):79-87. PubMed ID: 8480448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thymic commitment of regulatory T cells is a pathway of TCR-dependent selection that isolates repertoires undergoing positive or negative selection.
    Coutinho A; Caramalho I; Seixas E; Demengeot J
    Curr Top Microbiol Immunol; 2005; 293():43-71. PubMed ID: 15981475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation.
    Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V
    Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Importance of a thymus dysfunction in the pathophysiology of type 1 diabetes].
    Geenen V; Brilot F; Louis C; Hansenne I; Renard Ch; Martens H
    Rev Med Liege; 2005; 60(5-6):291-6. PubMed ID: 16035283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promiscuous gene expression in the thymus: the root of central tolerance.
    Magalhães DA; Silveira EL; Junta CM; Sandrin-Garcia P; Fachin AL; Donadi EA; Sakamoto-Hojo ET; Passos GA
    Clin Dev Immunol; 2006; 13(2-4):81-99. PubMed ID: 17162352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in type I diabetes associated tolerance mechanisms.
    Chentoufi AA; Binder NR; Berka N; Abunadi T; Polychronakos C
    Scand J Immunol; 2008 Jul; 68(1):1-11. PubMed ID: 18482207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thymus and type 1 diabetes: an update.
    Geenen V
    Diabetes Res Clin Pract; 2012 Oct; 98(1):26-32. PubMed ID: 22717497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-density cells isolated from the rat thymus resemble branched cortical macrophages and have a reduced capability of rescuing double-positive thymocytes from apoptosis in the BB-DP rat.
    Sommandas V; Rutledge EA; Van Yserloo B; Fuller J; Lernmark A; Drexhage HA
    J Leukoc Biol; 2007 Oct; 82(4):869-76. PubMed ID: 17599904
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of dendritic cells in the generation of regulatory T cells.
    Groux H; Fournier N; Cottrez F
    Semin Immunol; 2004 Apr; 16(2):99-106. PubMed ID: 15036233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic science for the clinician 36: protecting against autoimmunity: tolerance and aire, the immunologic shadow, and other mechanisms of negative selection in the thymus.
    Sigal LH
    J Clin Rheumatol; 2006 Feb; 12(1):44-6. PubMed ID: 16484883
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.