These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
840 related articles for article (PubMed ID: 17192708)
1. Differing effects of T4 DNA ligase in the modulation of the damage induced in mammalian cells by either X-rays or restriction endonucleases. Ortiz T; Piñero J Chemotherapy; 2007; 53(1):14-20. PubMed ID: 17192708 [TBL] [Abstract][Full Text] [Related]
2. The role of nonhomologous DNA end joining, conservative homologous recombination, and single-strand annealing in the cell cycle-dependent repair of DNA double-strand breaks induced by H(2)O(2) in mammalian cells. Frankenberg-Schwager M; Becker M; Garg I; Pralle E; Wolf H; Frankenberg D Radiat Res; 2008 Dec; 170(6):784-93. PubMed ID: 19138034 [TBL] [Abstract][Full Text] [Related]
3. Rejoining kinetics of DNA single- and double-strand breaks in normal and DNA ligase-deficient cells after exposure to ultraviolet C and gamma radiation: an evaluation of ligating activities involved in different DNA repair processes. Nocentini S Radiat Res; 1999 Apr; 151(4):423-32. PubMed ID: 10190494 [TBL] [Abstract][Full Text] [Related]
4. Hypertonic treatment does not affect the radiation yield of interphase chromosome breaks in DNA double-strand break repair-deficient xrs-5 cells. Okayasu R; Varlotto J; Iliakis G Radiat Res; 1993 Aug; 135(2):171-7. PubMed ID: 8367588 [TBL] [Abstract][Full Text] [Related]
5. Recovery from sublethal and potentially lethal damage in an X-ray-sensitive CHO cell. Schwartz JL; Giovanazzi S; Weichselbaum RR Radiat Res; 1987 Jul; 111(1):58-67. PubMed ID: 3602355 [TBL] [Abstract][Full Text] [Related]
6. Induction of DNA double-strand breaks by restriction enzymes in X-ray-sensitive mutant Chinese hamster ovary cells measured by pulsed-field gel electrophoresis. Kinashi Y; Okayasu R; Iliakis GE; Nagasawa H; Little JB Radiat Res; 1995 Feb; 141(2):153-9. PubMed ID: 7838953 [TBL] [Abstract][Full Text] [Related]
7. The influence of reduced glutathione on chromosome damage induced by X-rays or heavy ion beams of different LETs and on the interaction of DNA lesions induced by radiations and bleomycin. Pujari G; Sarma A; Chatterjee A Mutat Res; 2010 Feb; 696(2):154-9. PubMed ID: 20100593 [TBL] [Abstract][Full Text] [Related]
8. DNA repair and chromosomal alterations. Natarajan AT; Palitti F Mutat Res; 2008 Nov; 657(1):3-7. PubMed ID: 18801460 [TBL] [Abstract][Full Text] [Related]
9. Non-homologous end joining is the responsible pathway for the repair of fludarabine-induced DNA double strand breaks in mammalian cells. de Campos-Nebel M; Larripa I; González-Cid M Mutat Res; 2008 Nov; 646(1-2):8-16. PubMed ID: 18812179 [TBL] [Abstract][Full Text] [Related]
10. The type and yield of ionising radiation induced chromosomal aberrations depend on the efficiency of different DSB repair pathways in mammalian cells. Natarajan AT; Berni A; Marimuthu KM; Palitti F Mutat Res; 2008 Jul; 642(1-2):80-5. PubMed ID: 18561958 [TBL] [Abstract][Full Text] [Related]
11. Induction and rejoining of gamma-ray-induced DNA single- and double-strand breaks in Chinese hamster AA8 cells and in two radiosensitive clones. vanAnkeren SC; Murray D; Meyn RE Radiat Res; 1988 Dec; 116(3):511-25. PubMed ID: 3060896 [TBL] [Abstract][Full Text] [Related]
12. T4 DNA ligase modulates chromosome damage induced by restriction endonucleases through an error-free process. Ortiz T; Daza P; Piñero J; Cortés F Mutagenesis; 1995 Sep; 10(5):399-402. PubMed ID: 8544752 [TBL] [Abstract][Full Text] [Related]
13. Joining of correct and incorrect DNA double-strand break ends in normal human and ataxia telangiectasia fibroblasts. Löbrich M; Kühne M; Wetzel J; Rothkamm K Genes Chromosomes Cancer; 2000 Jan; 27(1):59-68. PubMed ID: 10564587 [TBL] [Abstract][Full Text] [Related]
14. Mechanism of radiosensitization by halogenated pyrimidines: effect of BrdU on repair of DNA breaks, interphase chromatin breaks, and potentially lethal damage in plateau-phase CHO cells. Iliakis G; Wang Y; Pantelias GE; Metzger L Radiat Res; 1992 Feb; 129(2):202-11. PubMed ID: 1734451 [TBL] [Abstract][Full Text] [Related]
15. Correlations of DNA strand breaks and their repair with cell survival following acute exposure to mercury(II) and X-rays. Cantoni O; Costa M Mol Pharmacol; 1983 Jul; 24(1):84-9. PubMed ID: 6223207 [TBL] [Abstract][Full Text] [Related]
16. Induction and rejoining of DNA double-strand breaks and interphase chromosome breaks after exposure to X rays in one normal and two hypersensitive human fibroblast cell lines. Badie C; Iliakis G; Foray N; Alsbeih G; Cedervall B; Chavaudra N; Pantelias G; Arlett C; Malaise EP Radiat Res; 1995 Oct; 144(1):26-35. PubMed ID: 7568768 [TBL] [Abstract][Full Text] [Related]
17. Analysis of restriction enzyme-induced DNA double-strand breaks in Chinese hamster ovary cells by pulsed-field gel electrophoresis: implications for chromosome damage. Ager DD; Phillips JW; Columna EA; Winegar RA; Morgan WF Radiat Res; 1991 Nov; 128(2):150-6. PubMed ID: 1658845 [TBL] [Abstract][Full Text] [Related]
18. DNA double-strand break and chromosomal rejoining defects with misrejoining in Nijmegen breakage syndrome cells. Pluth JM; Yamazaki V; Cooper BA; Rydberg BE; Kirchgessner CU; Cooper PK DNA Repair (Amst); 2008 Jan; 7(1):108-18. PubMed ID: 17919995 [TBL] [Abstract][Full Text] [Related]
19. Functional cell-cycle chromatin conformation changes in the presence of DNA damage result into chromatid breaks: a new insight in the formation of radiation-induced chromosomal aberrations based on the direct observation of interphase chromatin. Pantelias GE; Terzoudi GI Mutat Res; 2010 Aug; 701(1):27-37. PubMed ID: 20398788 [TBL] [Abstract][Full Text] [Related]
20. Single-strand annealing, conservative homologous recombination, nonhomologous DNA end joining, and the cell cycle-dependent repair of DNA double-strand breaks induced by sparsely or densely ionizing radiation. Frankenberg-Schwager M; Gebauer A; Koppe C; Wolf H; Pralle E; Frankenberg D Radiat Res; 2009 Mar; 171(3):265-73. PubMed ID: 19267553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]