BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17192971)

  • 1. Spherical bioactive glass with enhanced rates of hydroxyapatite deposition and hemostatic activity.
    Ostomel TA; Shi Q; Tsung CK; Liang H; Stucky GD
    Small; 2006 Nov; 2(11):1261-5. PubMed ID: 17192971
    [No Abstract]   [Full Text] [Related]  

  • 2. Peripheral quantitative computed tomography in evaluation of bioactive glass incorporation with bone.
    Välimäki VV; Moritz N; Yrjans JJ; Dalstra M; Aro HT
    Biomaterials; 2005 Nov; 26(33):6693-703. PubMed ID: 15941582
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteoclastogenesis on hydroxyapatite ceramics: the effect of carbonate substitution.
    Spence G; Patel N; Brooks R; Bonfield W; Rushton N
    J Biomed Mater Res A; 2010 Mar; 92(4):1292-300. PubMed ID: 19343778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioactive calcium pyrophosphate glasses and glass-ceramics.
    Kasuga T
    Acta Biomater; 2005 Jan; 1(1):55-64. PubMed ID: 16701780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of porosity and crystallinity of glass ceramics on the in vivo bioactive response.
    Xin R; Zhang Q; Chen J; Leng Y
    Biomed Mater; 2008 Dec; 3(4):041001. PubMed ID: 18824781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [A novel europium doped apatite/wollastonite porous magnetic bioactive glass ceramic].
    Zhang W; Zhou D; Yang W; Yin G; Ou J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2007 Aug; 24(4):785-9. PubMed ID: 17899745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrohydrodynamic coating of metal with nano-sized hydroxyapatite.
    Li X; Huang J; Ahmad Z; Edirisinghe M
    Biomed Mater Eng; 2007; 17(6):335-46. PubMed ID: 18032815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model.
    Stubbs D; Deakin M; Chapman-Sheath P; Bruce W; Debes J; Gillies RM; Walsh WR
    Biomaterials; 2004 Sep; 25(20):5037-44. PubMed ID: 15109866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities.
    Yan X; Yu C; Zhou X; Tang J; Zhao D
    Angew Chem Int Ed Engl; 2004 Nov; 43(44):5980-4. PubMed ID: 15547911
    [No Abstract]   [Full Text] [Related]  

  • 10. Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ.
    Li J; Chen Y; Yin Y; Yao F; Yao K
    Biomaterials; 2007 Feb; 28(5):781-90. PubMed ID: 17056107
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro hydroxyapatite forming ability and dissolution of tobermorite nanofibers.
    Lin K; Chang J; Cheng R
    Acta Biomater; 2007 Mar; 3(2):271-6. PubMed ID: 17234465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of interconnecting porous structure of hydroxyapatite ceramics on interface between grafted tendon and ceramics.
    Omae H; Mochizuki Y; Yokoya S; Adachi N; Ochi M
    J Biomed Mater Res A; 2006 Nov; 79(2):329-37. PubMed ID: 16817208
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of emulsified, acid and acid-alkali catalyzed mesoporous bioactive glass microspheres for bone regeneration and drug delivery.
    Miao G; Chen X; Dong H; Fang L; Mao C; Li Y; Li Z; Hu Q
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4236-43. PubMed ID: 23910338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated degradation and improved bone-bonding ability of hydroxyapatite ceramics by the addition of glass.
    So K; Fujibayashi S; Neo M; Anan Y; Ogawa T; Kokubo T; Nakamura T
    Biomaterials; 2006 Sep; 27(27):4738-44. PubMed ID: 16753209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the microstructure of biocomposites sintered from Ti, HA and bioactive glass.
    Ning CQ; Zhou Y
    Biomaterials; 2004 Aug; 25(17):3379-87. PubMed ID: 15020110
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigations on the in vitro bioactivity of swift heavy oxygen ion irradiated hydroxyapatite.
    Suganthi RV; Prakash Parthiban S; Elayaraja K; Girija EK; Kulariya P; Katharria YS; Singh F; Asokan K; Kanjilal D; Narayana Kalkura S
    J Mater Sci Mater Med; 2009 Dec; 20 Suppl 1():S271-5. PubMed ID: 19089600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Research development of hydroxyapatite-based composites used as hard tissue replacement].
    Ning C; Dai K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Sep; 20(3):550-4. PubMed ID: 14565037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of glass-ceramic bone implant materials on the in vitro formation of hydroxyapatite.
    Blumenthal NC; Posner AS; Cosma V; Gross U
    J Biomed Mater Res; 1988 Nov; 22(11):1033-41. PubMed ID: 2853711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorine-substituted hydroxyapatite scaffolds hydrothermally grown from aragonitic cuttlefish bones.
    Kannan S; Rocha JH; Agathopoulos S; Ferreira JM
    Acta Biomater; 2007 Mar; 3(2):243-9. PubMed ID: 17127113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterization of collagen-chitosan-hydroxyapatite artificial bone matrix.
    Wang Y; Zhang L; Hu M; Liu H; Wen W; Xiao H; Niu Y
    J Biomed Mater Res A; 2008 Jul; 86(1):244-52. PubMed ID: 18080313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.