These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 17192972)
1. Continuous tuning of silver nanoparticle size in a water-in-supercritical carbon dioxide microemulsion. Fernandez CA; Wai CM Small; 2006 Nov; 2(11):1266-9. PubMed ID: 17192972 [No Abstract] [Full Text] [Related]
2. [Controllable synthesis and UV-Vis spectral analysis of silver nanoparticles in AOT microemulsion]. Zhang WZ; Qiao XL; Luo LL; Chen JG Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Mar; 29(3):789-92. PubMed ID: 19455825 [TBL] [Abstract][Full Text] [Related]
3. Synthesis of Ag and AgI quantum dots in AOT-stabilized water-in-CO2 microemulsions. Liu J; Raveendran P; Shervani Z; Ikushima Y; Hakuta Y Chemistry; 2005 Mar; 11(6):1854-60. PubMed ID: 15685712 [TBL] [Abstract][Full Text] [Related]
4. Photoinduced phase separation of gold in two-component nanoparticles. Métraux GS; Jin R; Mirkin CA Small; 2006 Nov; 2(11):1335-9. PubMed ID: 17192983 [No Abstract] [Full Text] [Related]
5. Novel one pot synthesis of silver nanoparticle-polymer composites by supercritical CO2 polymerisation in the presence of a RAFT agent. Hasell T; Thurecht KJ; Jones RD; Brown PD; Howdle SM Chem Commun (Camb); 2007 Oct; (38):3933-5. PubMed ID: 17896037 [TBL] [Abstract][Full Text] [Related]
6. Environmentally sensitive silver nanoparticles of controlled size synthesized with PNIPAM as a nucleating and capping agent. Morones JR; Frey W Langmuir; 2007 Jul; 23(15):8180-6. PubMed ID: 17590029 [TBL] [Abstract][Full Text] [Related]
7. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Lengke MF; Fleet ME; Southam G Langmuir; 2007 Feb; 23(5):2694-9. PubMed ID: 17309217 [TBL] [Abstract][Full Text] [Related]
8. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature. Wang RC; Gao YS; Chen SJ Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939 [TBL] [Abstract][Full Text] [Related]
9. Straightforward green synthesis of "naked" aqueous silver nanoparticles. Giuffrida S; Ventimiglia G; Sortino S Chem Commun (Camb); 2009 Jul; (27):4055-7. PubMed ID: 19568631 [TBL] [Abstract][Full Text] [Related]
10. In situ synthesis of Ag nanoparticles in aminocalix[4]arene multilayers. Gao S; Yuan D; Lü J; Cao R J Colloid Interface Sci; 2010 Jan; 341(2):320-5. PubMed ID: 19854446 [TBL] [Abstract][Full Text] [Related]
11. A facile, water-based synthesis of highly branched nanostructures of silver. Wang Y; Camargo PH; Skrabalak SE; Gu H; Xia Y Langmuir; 2008 Oct; 24(20):12042-6. PubMed ID: 18817421 [TBL] [Abstract][Full Text] [Related]
12. Synthesis and antimicrobial properties of novel silver/polyrhodanine nanofibers. Kong H; Jang J Biomacromolecules; 2008 Oct; 9(10):2677-81. PubMed ID: 18771314 [TBL] [Abstract][Full Text] [Related]
13. Synthesis of Ag/BSA composite nanospheres from water-in-oil microemulsion using compressed CO2 as antisolvent. Zhang J; Han B; Chen J; Li Z; Liu Z; Wu W Biotechnol Bioeng; 2005 Feb; 89(3):274-9. PubMed ID: 15744837 [TBL] [Abstract][Full Text] [Related]
14. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Song JY; Kim BS Bioprocess Biosyst Eng; 2009 Jan; 32(1):79-84. PubMed ID: 18438688 [TBL] [Abstract][Full Text] [Related]
15. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique. Barakat NA; Woo KD; Kanjwal MA; Choi KE; Khil MS; Kim HY Langmuir; 2008 Oct; 24(20):11982-7. PubMed ID: 18811221 [TBL] [Abstract][Full Text] [Related]
16. A versatile strategy to fabricate hydrogel-silver nanocomposites and investigation of their antimicrobial activity. Thomas V; Yallapu MM; Sreedhar B; Bajpai SK J Colloid Interface Sci; 2007 Nov; 315(1):389-95. PubMed ID: 17707388 [TBL] [Abstract][Full Text] [Related]
17. Reversible size-tuning of self-assembled silver nanoparticles in phospholipid membranes via humidity control. Oh N; Kim JH; Jin S; Yoon CS Small; 2009 Jun; 5(11):1311-7. PubMed ID: 19274644 [TBL] [Abstract][Full Text] [Related]
18. Luminescence effect of silver nanoparticle in water phase. Jiang Z; Yuan W; Pan H Spectrochim Acta A Mol Biomol Spectrosc; 2005 Sep; 61(11-12):2488-94. PubMed ID: 16029956 [TBL] [Abstract][Full Text] [Related]
19. The fabrication of periodic polymer/silver nanoparticle structures: in situ reduction of silver nanoparticles from precursor spatially distributed in polymer using holographic exposure. Smirnova TN; Kokhtych LM; Kutsenko AS; Sakhno OV; Stumpe J Nanotechnology; 2009 Oct; 20(40):405301. PubMed ID: 19752504 [TBL] [Abstract][Full Text] [Related]
20. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Wu M; Kuga S; Huang Y Langmuir; 2008 Sep; 24(18):10494-7. PubMed ID: 18680325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]