BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

343 related articles for article (PubMed ID: 17193084)

  • 1. Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes.
    Li L; Yang YW; Li GH; Zhang LD
    Small; 2006 Apr; 2(4):548-53. PubMed ID: 17193084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-film formation of bi nanowires with extraordinary electron mobility.
    Shim W; Ham J; Lee KI; Jeung WY; Johnson M; Lee W
    Nano Lett; 2009 Jan; 9(1):18-22. PubMed ID: 19032034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoted growth of Bi single-crystalline nanowires by sidewall-induced compressive stress in on-film formation of nanowires.
    Kim H; Noh JS; Ham J; Lee W
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2047-51. PubMed ID: 21449347
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrodeposited bismuth telluride nanowire arrays with uniform growth fronts.
    Trahey L; Becker CR; Stacy AM
    Nano Lett; 2007 Aug; 7(8):2535-9. PubMed ID: 17629346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of uniform single-crystalline bismuth sulfide nanowires under mixed-solvent condition.
    Wang X; Li L; Wang S; Guo Q; Zhang Z; Qian Y
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2042-5. PubMed ID: 17025122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled Bi interconnections produced by on-film formation of nanowires for in situ device fabrication.
    Ham J; Kang J; Noh JS; Lee W
    Nanotechnology; 2010 Apr; 21(16):165302. PubMed ID: 20348595
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, structure, and multiply enhanced field-emission properties of branched ZnS nanotube-in nanowire core-shell heterostructures.
    Gautam UK; Fang X; Bando Y; Zhan J; Golberg D
    ACS Nano; 2008 May; 2(5):1015-21. PubMed ID: 19206499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of arrays of metal and metal oxide nanotubes by shadow evaporation.
    Dickey MD; Weiss EA; Smythe EJ; Chiechi RC; Capasso F; Whitesides GM
    ACS Nano; 2008 Apr; 2(4):800-8. PubMed ID: 19206613
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of suspended silicon nanowire arrays.
    Lee KN; Jung SW; Shin KS; Kim WH; Lee MH; Seong WK
    Small; 2008 May; 4(5):642-8. PubMed ID: 18431721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single crystalline and core-shell indium-catalyzed germanium nanowires-a systematic thermal CVD growth study.
    Xiang Y; Cao L; Conesa-Boj S; Estrade S; Arbiol J; Peiro F; Heiss M; Zardo I; Morante JR; Brongersma ML; Fontcuberta I Morral A
    Nanotechnology; 2009 Jun; 20(24):245608. PubMed ID: 19471084
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heteroepitaxial growth of nanoscale oxide shell/fiber superstructures by mild hydrothermal processes.
    Chen CH; Jin L; Espinal AE; Firliet BT; Xu L; Aindow M; Joesten R; Suib SL
    Small; 2010 May; 6(9):988-92. PubMed ID: 20440703
    [No Abstract]   [Full Text] [Related]  

  • 12. Comparative studies of pentacene and perfluoropentacene grown on a Bi(0001) surface.
    Wang JZ; Sadowski JT; Xiong ZH; Fujikawa Y; Xue QK; Sakurai T
    Nanotechnology; 2009 Mar; 20(9):095704. PubMed ID: 19417500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrically conductive and optically active porous silicon nanowires.
    Qu Y; Liao L; Li Y; Zhang H; Huang Y; Duan X
    Nano Lett; 2009 Dec; 9(12):4539-43. PubMed ID: 19807130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Observation of anisotropy in thermal conductivity of individual single-crystalline bismuth nanowires.
    Roh JW; Hippalgaonkar K; Ham JH; Chen R; Li MZ; Ercius P; Majumdar A; Kim W; Lee W
    ACS Nano; 2011 May; 5(5):3954-60. PubMed ID: 21466197
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic growth of single-crystalline V(2)O(5) nanowire arrays.
    Velazquez JM; Banerjee S
    Small; 2009 May; 5(9):1025-9. PubMed ID: 19235798
    [No Abstract]   [Full Text] [Related]  

  • 16. Novel vapor phase reactions for the synthesis and modification of carbon nanotubes and inorganic nanowires.
    Govindaraj A; Vivekchand SR; Rao CN
    J Nanosci Nanotechnol; 2007 Jun; 7(6):1695-702. PubMed ID: 17654926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lithographically patterned nanowire electrodeposition: a method for patterning electrically continuous metal nanowires on dielectrics.
    Xiang C; Kung SC; Taggart DK; Yang F; Thompson MA; Güell AG; Yang Y; Penner RM
    ACS Nano; 2008 Sep; 2(9):1939-49. PubMed ID: 19206435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of nanowire channels with unidirectional alignment and controlled length by a simple, gas-blowing-assisted, selective-transfer-printing technique.
    Kim YK; Kang PS; Kim DI; Shin G; Kim GT; Ha JS
    Small; 2009 Mar; 5(6):727-34. PubMed ID: 19197970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Localized temperature and chemical reaction control in nanoscale space by nanowire array.
    Jin CY; Li Z; Williams RS; Lee KC; Park I
    Nano Lett; 2011 Nov; 11(11):4818-25. PubMed ID: 21967343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable electrical properties of silicon nanowires via surface-ambient chemistry.
    Yuan GD; Zhou YB; Guo CS; Zhang WJ; Tang YB; Li YQ; Chen ZH; He ZB; Zhang XJ; Wang PF; Bello I; Zhang RQ; Lee CS; Lee ST
    ACS Nano; 2010 Jun; 4(6):3045-52. PubMed ID: 20565140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.