BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17193225)

  • 1. Thermotropic lipid phase transition and the behavior of hydrolytic enzymes in the kidney cortex brush border membrane.
    Sanyal SN; Singh G; Kanwar SS
    Chem Biodivers; 2006 Oct; 3(10):1102-15. PubMed ID: 17193225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Order-disorder phase transition and lipid dynamics in rabbit small intestinal brush border membranes. Effect of proteins.
    Mütsch B; Gains N; Hauser H
    Biochemistry; 1983 Dec; 22(26):6326-33. PubMed ID: 6318815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluidity of brush border and basolateral membranes from human kidney cortex.
    Le Grimellec C; Carrière S; Cardinal J; Giocondi MC
    Am J Physiol; 1983 Aug; 245(2):F227-31. PubMed ID: 6309013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of cholesterol and temperature perturbations on membrane hydrolases and transport of calcium and glucose in guinea pig brush border membrane vesicles.
    Minocha R; Sanyal SN; Wali A; Gumbhir K; Majumdar S
    Biochem Int; 1988 Jun; 16(6):1019-25. PubMed ID: 3178855
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phospholipid membrane-associated brush border myosin-I activity.
    Zot HG
    Cell Motil Cytoskeleton; 1995; 30(1):26-37. PubMed ID: 7728866
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elucidation of biphasic alterations on acetylcholinesterase (AChE) activity and membrane fluidity in the structure-functional effects of tetracaine on AChE-associated membrane vesicles.
    Chen CH; Zuklie BM; Roth LG
    Arch Biochem Biophys; 1998 Mar; 351(1):135-40. PubMed ID: 9500847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of phospholipid transfer protein as a probe to study the lipid dynamics and alkaline phosphatase activity in the brush border membrane of human term placenta.
    Sanyal SN; Goyal M; Kanwar SS; Kaushal S
    Chem Biodivers; 2006 May; 3(5):527-34. PubMed ID: 17193288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Membrane fluidity and enzyme activities in brush border and basolateral membranes of the dog kidney.
    Le Grimellec C; Giocondi MC; Carrière B; Carrière S; Cardinal J
    Am J Physiol; 1982 Mar; 242(3):F246-53. PubMed ID: 6278950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipids, proteins, and their interplay in the dynamics of temperature-stressed membranes of a cyanobacterium, Synechocystis PCC 6803.
    Laczkó-Dobos H; Szalontai B
    Biochemistry; 2009 Oct; 48(42):10120-8. PubMed ID: 19788309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Orientation and motion of spin-labels in rabbit small intestinal brush border vesicle membranes.
    Hauser H; Gains N; Semenza G; Spiess M
    Biochemistry; 1982 Oct; 21(22):5621-8. PubMed ID: 6293550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies on the purified Na+,Mg(2+)-ATPase from Acholeplasma laidlawii B membranes: a differential scanning calorimetric study of the protein-phospholipid interactions.
    George R; Lewis RN; McElhaney RN
    Biochem Cell Biol; 1990 Jan; 68(1):161-8. PubMed ID: 2140945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biochemical, immunological and ultrastructural studies on brush-border membranes of human kidney.
    Scherberich JE; Gauhl C; Mondorf W
    Curr Probl Clin Biochem; 1977 Oct 23-26; 8():85-95. PubMed ID: 28905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermotropic phase behaviour of lipid bilayers containing carotenoid pigment canthaxanthin: a differential scanning calorimetry study.
    Sujak A; Strzałka K; Gruszecki WI
    Chem Phys Lipids; 2007 Jan; 145(1):1-12. PubMed ID: 17078939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Compartmentation of gramicidin 5 in membranes of sensitive bacteria and protein-lipid interactions].
    Eremin VA; Bulgakova VG; Kaprel'iants AS; Lplin AN; Ostrovskiĭ DN
    Biokhimiia; 1979 Mar; 44(3):548-54. PubMed ID: 88965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-lipid interactions in human small intestinal brush-border membranes.
    Dudeja PK; Harig JM; Ramaswamy K; Brasitus TA
    Am J Physiol; 1989 Nov; 257(5 Pt 1):G809-17. PubMed ID: 2596611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interactions of lipids and proteins in rat intestinal microvillus membranes.
    Brasitus TA; Schachter D; Mamouneas TG
    Biochemistry; 1979 Sep; 18(19):4136-44. PubMed ID: 39592
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipid-phase structure in epithelial cell membranes: comparison of renal brush border and basolateral membranes.
    Illsley NP; Lin HY; Verkman AS
    Biochemistry; 1988 Mar; 27(6):2077-83. PubMed ID: 3378045
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phospholipid methylation of kidney cortex brush border membranes. Effect on fluidity and transport.
    Chauhan VP; Sikka SC; Kalra VK
    Biochim Biophys Acta; 1982 Jun; 688(2):357-68. PubMed ID: 7104330
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Modification of Memebrane Lipid composition by lipophilic agents, and its effect on the activity of membrane-bound enzymes].
    Bossmann B; Hütter HJ
    Eur J Clin Chem Clin Biochem; 1992 Jul; 30(7):381-5. PubMed ID: 1525260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Calorimetric studies of the effect of cis-carotenoids on the thermotropic phase behavior of phosphatidylcholine bilayers.
    Widomska J; Kostecka-Gugała A; Latowski D; Gruszecki WI; Strzałka K
    Biophys Chem; 2009 Mar; 140(1-3):108-14. PubMed ID: 19126445
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.