These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 17193318)

  • 1. Investigation of de novo totally random biosequences, Part III: RNA Foster: A novel assay to investigate RNA folding structural properties.
    De Lucrezia D; Franchi M; Chiarabelli C; Gallori E; Luisi PL
    Chem Biodivers; 2006 Aug; 3(8):860-8. PubMed ID: 17193318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of de novo totally random biosequences, Part IV: Folding Properties of de novo, totally random RNAs.
    De Lucrezia D; Franchi M; Chiarabelli C; Gallori E; Luisi PL
    Chem Biodivers; 2006 Aug; 3(8):869-77. PubMed ID: 17193319
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of de novo totally random biosequences, Part II: On the folding frequency in a totally random library of de novo proteins obtained by phage display.
    Chiarabelli C; Vrijbloed JW; De Lucrezia D; Thomas RM; Stano P; Polticelli F; Ottone T; Papa E; Luisi PL
    Chem Biodivers; 2006 Aug; 3(8):840-59. PubMed ID: 17193317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding.
    Park C; Marqusee S
    Nat Methods; 2005 Mar; 2(3):207-12. PubMed ID: 15782190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Topological classification of RNA structures.
    Bon M; Vernizzi G; Orland H; Zee A
    J Mol Biol; 2008 Jun; 379(4):900-11. PubMed ID: 18485361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of de novo totally random biosequences, Part I: A general method for in vitro selection of folded domains from a random polypeptide library displayed on phage.
    Chiarabelli C; Vrijbloed JW; Thomas RM; Luisi PL
    Chem Biodivers; 2006 Aug; 3(8):827-39. PubMed ID: 17193316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double sugar and phosphate backbone-constrained nucleotides: synthesis, structure, stability, and their incorporation into oligodeoxynucleotides.
    Zhou C; Plashkevych O; Chattopadhyaya J
    J Org Chem; 2009 May; 74(9):3248-65. PubMed ID: 19348480
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gold nanoparticle based NSET for monitoring Mg2+ dependent RNA folding.
    Griffin J; Ray PC
    J Phys Chem B; 2008 Sep; 112(36):11198-201. PubMed ID: 18702540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple molecular model for thermophilic adaptation of functional nucleic acids.
    Blose JM; Silverman SK; Bevilacqua PC
    Biochemistry; 2007 Apr; 46(14):4232-40. PubMed ID: 17361991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A complex adaptive systems approach to the kinetic folding of RNA.
    Ndifon W
    Biosystems; 2005 Dec; 82(3):257-65. PubMed ID: 16171941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of RNA folding and ligand binding by conventional and high-throughput calorimetry.
    Sokoloski JE; Bevilacqua PC
    Methods Mol Biol; 2012; 905():145-74. PubMed ID: 22736003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A contact-waiting-time metric and RNA folding rates.
    Nkwanta A; Ndifon W
    FEBS Lett; 2009 Jul; 583(14):2392-4. PubMed ID: 19560463
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human telomerase RNA pseudoknot and hairpin thermal stability with glycine betaine and urea: preferential interactions with RNA secondary and tertiary structures.
    Schwinefus JJ; Kuprian MJ; Lamppa JW; Merker WE; Dorn KN; Muth GW
    Biochemistry; 2007 Aug; 46(31):9068-79. PubMed ID: 17630773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. UNAFold: software for nucleic acid folding and hybridization.
    Markham NR; Zuker M
    Methods Mol Biol; 2008; 453():3-31. PubMed ID: 18712296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural methods for studying IRES function.
    Kieft JS; Costantino DA; Filbin ME; Hammond J; Pfingsten JS
    Methods Enzymol; 2007; 430():333-71. PubMed ID: 17913644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. UNA (unlocked nucleic acid): a flexible RNA mimic that allows engineering of nucleic acid duplex stability.
    Langkjaer N; Pasternak A; Wengel J
    Bioorg Med Chem; 2009 Aug; 17(15):5420-5. PubMed ID: 19604699
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of macromolecular structure and function using covalently attached double-stranded DNA constraints.
    Silverman SK
    Mol Biosyst; 2007 Jan; 3(1):24-9. PubMed ID: 17216052
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding kinetics of large RNAs.
    Geis M; Flamm C; Wolfinger MT; Tanzer A; Hofacker IL; Middendorf M; Mandl C; Stadler PF; Thurner C
    J Mol Biol; 2008 May; 379(1):160-73. PubMed ID: 18440024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solvent-exposed residues located in the beta-sheet modulate the stability of the tetramerization domain of p53--a structural and combinatorial approach.
    Mora P; Carbajo RJ; Pineda-Lucena A; Sánchez del Pino MM; Pérez-Payá E
    Proteins; 2008 Jun; 71(4):1670-85. PubMed ID: 18076077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thinking inside the box: designing, implementing, and interpreting thermodynamic cycles to dissect cooperativity in RNA and DNA folding.
    Siegfried NA; Bevilacqua PC
    Methods Enzymol; 2009; 455():365-93. PubMed ID: 19289213
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.