These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
439 related articles for article (PubMed ID: 17193422)
21. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. Zhu H; Song N; Lian T J Am Chem Soc; 2010 Oct; 132(42):15038-45. PubMed ID: 20925344 [TBL] [Abstract][Full Text] [Related]
22. Highly luminescent CdTe/CdS/ZnO core/shell/shell quantum dots fabricated using an aqueous strategy. Zhimin Yuan ; Wang J; Yang P Luminescence; 2013; 28(2):169-75. PubMed ID: 22511616 [TBL] [Abstract][Full Text] [Related]
23. Super sensitization: grand charge (hole/electron) separation in ATC dye sensitized CdSe, CdSe/ZnS type-I, and CdSe/CdTe type-II core-shell quantum dots. Debnath T; Maity P; Ghosh HN Chemistry; 2014 Oct; 20(41):13305-13. PubMed ID: 25179856 [TBL] [Abstract][Full Text] [Related]
24. Highly luminescent (Zn,Cd)Te/CdSe colloidal heteronanowires with tunable electron-hole overlap. Groeneveld E; van Berkum S; van Schooneveld MM; Gloter A; Meeldijk JD; van den Heuvel DJ; Gerritsen HC; de Mello Donega C Nano Lett; 2012 Feb; 12(2):749-57. PubMed ID: 22214477 [TBL] [Abstract][Full Text] [Related]
25. Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots. Grodzińska D; Evers WH; Dorland R; van Rijssel J; van Huis MA; Meijerink A; de Mello Donegá C; Vanmaekelbergh D Small; 2011 Dec; 7(24):3493-501. PubMed ID: 22021097 [TBL] [Abstract][Full Text] [Related]
26. Aqueous synthesis and fluorescence-imaging application of CdTe/ZnSe core/shell quantum dots with high stability and low cytotoxicity. Fu T; Qin HY; Hu HJ; Hong Z; He S J Nanosci Nanotechnol; 2010 Mar; 10(3):1741-6. PubMed ID: 20355568 [TBL] [Abstract][Full Text] [Related]
27. Spectroscopy and femtosecond dynamics of type-II CdTe/CdSe core-shell quantum dots. Chou PT; Chen CY; Cheng CT; Pu SC; Wu KC; Cheng YM; Lai CW; Chou YH; Chiu HT Chemphyschem; 2006 Jan; 7(1):222-8. PubMed ID: 16404768 [TBL] [Abstract][Full Text] [Related]
28. Aqueous synthesis of type-II core/shell CdTe/CdSe quantum dots for near-infrared fluorescent sensing of copper(II). Xia Y; Zhu C Analyst; 2008 Jul; 133(7):928-32. PubMed ID: 18575647 [TBL] [Abstract][Full Text] [Related]
29. Aqueous layer-by-layer epitaxy of type-II CdTe/CdSe quantum dots with near-infrared fluorescence for bioimaging applications. Zhang Y; Li Y; Yan XP Small; 2009 Feb; 5(2):185-9. PubMed ID: 19016250 [No Abstract] [Full Text] [Related]
30. Long-term exposure to CdTe quantum dots causes functional impairments in live cells. Cho SJ; Maysinger D; Jain M; Röder B; Hackbarth S; Winnik FM Langmuir; 2007 Feb; 23(4):1974-80. PubMed ID: 17279683 [TBL] [Abstract][Full Text] [Related]
31. Dark-red-emitting CdTe/Cd1-x Znx S core/shell quantum dots: preparation and properties. Yang P; Murase N Luminescence; 2013; 28(5):713-8. PubMed ID: 22941972 [TBL] [Abstract][Full Text] [Related]
32. Signal-switchable lab-on-paper photoelectrochemical aptasensing system integrated triple-helix molecular switch with charge separation and recombination regime of type-II CdTe@CdSe core-shell quantum dots. Hu M; Yang H; Li Z; Zhang L; Zhu P; Yan M; Yu J Biosens Bioelectron; 2020 Jan; 147():111786. PubMed ID: 31654824 [TBL] [Abstract][Full Text] [Related]
33. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy. McArthur EA; Morris-Cohen AJ; Knowles KE; Weiss EA J Phys Chem B; 2010 Nov; 114(45):14514-20. PubMed ID: 20507144 [TBL] [Abstract][Full Text] [Related]
34. Formation of CdTe core and CdTe@ZnTe core-shell quantum dots Haque M; Chutia J; Mondal A; Quraishi S; Kumari K; Marboh EWM; Aguan K; Singha Roy A Phys Chem Chem Phys; 2024 Sep; 26(35):22941-22958. PubMed ID: 39171443 [TBL] [Abstract][Full Text] [Related]
35. Superposition of Quantum Confinement Energy (SQCE) model for estimating shell thickness in core-shell quantum dots: validation and comparison. Saran AD; Mehra A; Bellare JR J Colloid Interface Sci; 2012 Jul; 378(1):21-9. PubMed ID: 22578831 [TBL] [Abstract][Full Text] [Related]
36. Low temperature synthesis of ZnS and CdZnS shells on CdSe quantum dots. Zhu H; Prakash A; Benoit DN; Jones CJ; Colvin VL Nanotechnology; 2010 Jun; 21(25):255604. PubMed ID: 20516578 [TBL] [Abstract][Full Text] [Related]
37. Microwave-Assisted Synthesis of Glutathione-Capped CdTe/CdSe Near-Infrared Quantum Dots for Cell Imaging. Chen X; Li L; Lai Y; Yan J; Tang Y; Wang X Int J Mol Sci; 2015 May; 16(5):11500-8. PubMed ID: 25997004 [TBL] [Abstract][Full Text] [Related]
38. Dielectric confinement of excitons in type-I and type-II semiconductor nanorods. Royo M; Climente JI; Movilla JL; Planelles J J Phys Condens Matter; 2011 Jan; 23(1):015301. PubMed ID: 21406821 [TBL] [Abstract][Full Text] [Related]
39. Water-Soluble Fluorescent CdTe/ZnSe Core/Shell Quantum Dot: Aqueous Phase Synthesis and Cytotoxicity Assays. Li Y; Wang W; Zhao D; Chen P; Du H; Wen Y; Zhang X J Nanosci Nanotechnol; 2015 Jun; 15(6):4648-52. PubMed ID: 26369092 [TBL] [Abstract][Full Text] [Related]
40. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination. Bae WK; Padilha LA; Park YS; McDaniel H; Robel I; Pietryga JM; Klimov VI ACS Nano; 2013 Apr; 7(4):3411-9. PubMed ID: 23521208 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]