BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 17193463)

  • 41. Synthesis of homogeneous FePt nanoparticles using a nitrile ligand.
    Monnier V; Delalande M; Bayle-Guillemaud P; Samson Y; Reiss P
    Small; 2008 Aug; 4(8):1139-42. PubMed ID: 18623297
    [No Abstract]   [Full Text] [Related]  

  • 42. Temperature dependence of up-conversion luminescence and photoluminescence of Mn2+ in ZnS:Mn2+ nanoparticles.
    Joly AG; Chen W; Roark J; Zhang JZ
    J Nanosci Nanotechnol; 2001 Sep; 1(3):295-301. PubMed ID: 12914066
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Stable colloidal solutions of high-temperature-annealed L10 FePt nanoparticles.
    Delattre A; Pouget S; Jacquot JF; Samson Y; Reiss P
    Small; 2010 Apr; 6(8):932-6. PubMed ID: 20213650
    [No Abstract]   [Full Text] [Related]  

  • 46. Semiconductor morphology: optimizing properties by tuning morphology.
    Yin L; Bando Y
    Nat Mater; 2005 Dec; 4(12):883-4. PubMed ID: 16319933
    [No Abstract]   [Full Text] [Related]  

  • 47. Chemical vapor synthesis of size-selected zinc oxide nanoparticles.
    Polarz S; Roy A; Merz M; Halm S; Schröder D; Schneider L; Bacher G; Kruis FE; Driess M
    Small; 2005 May; 1(5):540-52. PubMed ID: 17193484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Scalable production of microbially mediated zinc sulfide nanoparticles and application to functional thin films.
    Moon JW; Ivanov IN; Joshi PC; Armstrong BL; Wang W; Jung H; Rondinone AJ; Jellison GE; Meyer HM; Jang GG; Meisner RA; Duty CE; Phelps TJ
    Acta Biomater; 2014 Oct; 10(10):4474-83. PubMed ID: 24932768
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Surfactant- and temperature-controlled CdS nanowire formation.
    Kang CC; Lai CW; Peng HC; Shyue JJ; Chou PT
    Small; 2007 Nov; 3(11):1882-5. PubMed ID: 17935078
    [No Abstract]   [Full Text] [Related]  

  • 50. [Photoexcitation mechanism of photoconductive device by organic/inorganic thin-film heteropairing].
    Jin H; Teng F; Liu JF; Meng XG; Xu Z; Hou YB; Xu XR
    Guang Pu Xue Yu Guang Pu Fen Xi; 2004 Aug; 24(8):918-21. PubMed ID: 15766107
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: II. Slenderness ratio and crystalline filling effects.
    Costa PM; Cachim PB; Gautam UK; Bando Y; Golberg D
    Nanotechnology; 2009 Oct; 20(40):405707. PubMed ID: 19752501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled colloidal growth of ultrathin single-crystal ZnS nanowires with a magic-size diameter.
    Deng Z; Yan H; Liu Y
    Angew Chem Int Ed Engl; 2010 Nov; 49(46):8695-8. PubMed ID: 20922732
    [No Abstract]   [Full Text] [Related]  

  • 53. The mechanical response of turbostratic carbon nanotubes filled with Ga-doped ZnS: I. Data processing for the extraction of the elastic modulus.
    Costa PM; Cachim PB; Gautam UK; Bando Y; Golberg D
    Nanotechnology; 2009 Oct; 20(40):405706. PubMed ID: 19752492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Double-template synthesis of CdS nanotubes with strong electrogenerated chemiluminescence.
    Miao JJ; Ren T; Dong L; Zhu JJ; Chen HY
    Small; 2005 Aug; 1(8-9):802-5. PubMed ID: 17193526
    [No Abstract]   [Full Text] [Related]  

  • 55. Synthesis of Cu(2)ZnSnS(4) micro- and nanoparticles via a continuous-flow supercritical carbon dioxide process.
    Casciato MJ; Levitin G; Hess DW; Grover MA
    ChemSusChem; 2012 Jul; 5(7):1186-9. PubMed ID: 22707477
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Purification of semiconducting carbon nanotubes.
    Yuan D; Liu J
    Small; 2007 Mar; 3(3):366-7. PubMed ID: 17285648
    [No Abstract]   [Full Text] [Related]  

  • 57. Ordering of quantum dots using genetically engineered viruses.
    Lee SW; Mao C; Flynn CE; Belcher AM
    Science; 2002 May; 296(5569):892-5. PubMed ID: 11988570
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile synthesis of luminescent AgInSâ‚‚--ZnS solid solution nanorods.
    Yang X; Tang Y; Tan ST; Bosman M; Dong Z; Leck KS; Ji Y; Demir HV; Sun XW
    Small; 2013 Aug; 9(16):2689-95. PubMed ID: 23589511
    [No Abstract]   [Full Text] [Related]  

  • 59. On the generation of free radical species from quantum dots.
    Ipe BI; Lehnig M; Niemeyer CM
    Small; 2005 Jul; 1(7):706-9. PubMed ID: 17193510
    [No Abstract]   [Full Text] [Related]  

  • 60. Hydronium ion motion in nanometer 3-methyl-pentane films.
    Bell RC; Wu K; Iedema MJ; Cowin JP
    J Chem Phys; 2007 Jul; 127(2):024704. PubMed ID: 17640142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.