These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17193971)

  • 1. [Experimental studies of the relative biological effectiveness of accelerated charged particles varying in energy].
    Fedorenko BS; Petrov VM; Smirnova OA; Vorozhtsova SV; Abrosimova AN
    Aviakosm Ekolog Med; 2006; 40(3):55-63. PubMed ID: 17193971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [The biological effects of heavy charged particles. The main results and prospective research in the context of interplanetary flights].
    Fedorenko BS
    Aviakosm Ekolog Med; 1995; 29(2):16-21. PubMed ID: 7550140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Evaluation of biological effectiveness of high-energy accelerated particles based on the study of cytogenetic disorders in murine sex cells].
    Baĭrakova AK; Fedorenko BS
    Kosm Biol Aviakosm Med; 1991; 25(3):42-4. PubMed ID: 1770767
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Substantiation of radiation quality coefficient dependence on LET in application to the assessment of early radiobiological effects].
    Shafirkin AV; Fedorenko BS
    Aviakosm Ekolog Med; 1998; 32(2):4-9. PubMed ID: 9661768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cataract production in mice by heavy charged argon, neon, and carbon particles.
    Jose JG; Ainsworth EJ
    Radiat Res; 1983 Jun; 94(3):513-28. PubMed ID: 6856788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Nonparametric method of determining the RBE coefficients of accelerated charged particles by the incidence of neoplasms in rats].
    Fedorenko BS; Smirnova OA
    Radiobiologiia; 1987; 27(2):280-2. PubMed ID: 3033735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Some perspectives on cataractogenesis from heavy charged particles.
    Lett JT; Cox AB; Lee AC
    Radiat Res Suppl; 1985; 8():S201-7. PubMed ID: 3867084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative biological effectiveness of 6 MeV neutrons with respect to cell inactivation and disturbances of the G1 phase.
    Zölzer F; Streffer C
    Radiat Res; 2008 Feb; 169(2):207-13. PubMed ID: 18220459
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Review of relative biological effectiveness dependence on linear energy transfer for low-LET radiations.
    Hunter N; Muirhead CR
    J Radiol Prot; 2009 Mar; 29(1):5-21. PubMed ID: 19225189
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What is the clinically relevant relative biologic effectiveness? A warning for fractionated treatments with high linear energy transfer radiation.
    Daşu A; Toma-Daşu I
    Int J Radiat Oncol Biol Phys; 2008 Mar; 70(3):867-74. PubMed ID: 17889448
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relevance of dose for low-energy beta emitters.
    Goodhead DT
    J Radiol Prot; 2009 Sep; 29(3):321-33. PubMed ID: 19690362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Investigation of the processes of post-radiation reparation of the corneal epithelium cells of mice irradiated by helium ions with various LET values].
    Vorozhtsova SV; Fedorenko SB; Shafirkin AV; Chikhladze TsA
    Aviakosm Ekolog Med; 2008; 42(2):53-8. PubMed ID: 18714728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High relative biologic effectiveness of carbon ion radiation on induction of rat mammary carcinoma and its lack of H-ras and Tp53 mutations.
    Imaoka T; Nishimura M; Kakinuma S; Hatano Y; Ohmachi Y; Yoshinaga S; Kawano A; Maekawa A; Shimada Y
    Int J Radiat Oncol Biol Phys; 2007 Sep; 69(1):194-203. PubMed ID: 17707273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biological effectiveness of (12)C and (20)Ne ions with very high LET.
    Czub J; Banaś D; Błaszczyk A; Braziewicz J; Buraczewska I; Choinski J; Gorak U; Jaskoła M; Korman A; Lankoff A; Lisowska H; Lukaszek A; Szeflinski Z; Wojcik A
    Int J Radiat Biol; 2008 Oct; 84(10):821-9. PubMed ID: 18979317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [The model of the rate of radiation-induced mammalian death based on the determination of delayed consequences of different doses of radiation].
    Shafirkin AV
    Aviakosm Ekolog Med; 1999; 33(4):64-9. PubMed ID: 10530391
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RBE for skin tumors and hair follicle damage in the rat following irradiation with alpha particles and electrons.
    Burns FJ; Albert RE; Heimbach RD
    Radiat Res; 1968 Nov; 36(2):225-41. PubMed ID: 17387942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RBE values for fast neutrons in connection with estimates of the radiation burden in space.
    Graul EH; Kruger H; Ruther W; Piroth D
    Life Sci Space Res; 1969; 7():186-94. PubMed ID: 12197537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Relative biological effectiveness of accelerated heavy ions and fast neutrons estimated from frequency of aberration mytoses in the retinal epithelium].
    Vorozhtsova SV; Shafirkin AV; Fedorenko BS
    Aviakosm Ekolog Med; 2006; 40(3):42-9. PubMed ID: 17193969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [The modelling of local radiation injuries to the skin].
    Zviahintseva TV
    Fiziol Zh (1994); 1998; 44(5-6):106-12. PubMed ID: 9866033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biokinetic and dosimetric modelling in the estimation of radiation risks from internal emitters.
    Harrison J
    J Radiol Prot; 2009 Jun; 29(2A):A81-A105. PubMed ID: 19454809
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.