BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 17194086)

  • 1. Enantioselective fluorescent recognition of amino alcohols by a chiral tetrahydroxyl 1,1'-binaphthyl compound.
    Wang Q; Chen X; Tao L; Wang L; Xiao D; Yu XQ; Pu L
    J Org Chem; 2007 Jan; 72(1):97-101. PubMed ID: 17194086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enantioselective fluorescent sensors: a tale of BINOL.
    Pu L
    Acc Chem Res; 2012 Feb; 45(2):150-63. PubMed ID: 21834528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optically active BINOL core-based phenyleneethynylene dendrimers for the enantioselective fluorescent recognition of amino alcohols.
    Pugh VJ; Hu QS; Zuo X; Lewis FD; Pu L
    J Org Chem; 2001 Sep; 66(18):6136-40. PubMed ID: 11529742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective fluorescent recognition of chiral acids by cyclohexane-1,2-diamine-based bisbinaphthyl molecules.
    Li ZB; Lin J; Sabat M; Hyacinth M; Pu L
    J Org Chem; 2007 Jun; 72(13):4905-16. PubMed ID: 17530897
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Intramolecular Charge Transfer Mechanism by Which Chiral Self-Assembled H
    Wang R; Song K; Wei Z; Sun Y; Sun X; Hu Y
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38891794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of the fluorescent properties of partially hydrogenated 1,1'-bi-2-naphthol-amine molecules and their use for enantioselective fluorescent recognition.
    Yu S; DeBerardinis AM; Turlington M; Pu L
    J Org Chem; 2011 Apr; 76(8):2814-9. PubMed ID: 21405012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A colorimetric chiral sensor based on chiral crown ether for the recognition of the two enantiomers of primary amino alcohols and amines.
    Cho EN; Li Y; Kim HJ; Hyun MH
    Chirality; 2011 Apr; 23(4):349-53. PubMed ID: 21384440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ approach for testing the enantiopurity of chiral amines and amino alcohols by 1H NMR.
    Mishra SK; Chaudhari SR; Suryaprakash N
    Org Biomol Chem; 2014 Jan; 12(3):495-502. PubMed ID: 24280980
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optically active dendrimers with a binaphthyl core and phenylene dendrons: light harvesting and enantioselective fluorescent sensing.
    Gong LZ; Hu QS; Pu L
    J Org Chem; 2001 Apr; 66(7):2358-67. PubMed ID: 11281776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiral 1,1'-binaphthylazepine-derived amino alcohol catalyzed asymmetric aryl transfer reactions with boroxine as aryl source.
    Liu C; Guo ZL; Weng J; Lu G; Chan AS
    Chirality; 2010 Jan; 22(1):159-64. PubMed ID: 19418552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence of organic molecules in chiral recognition.
    Pu L
    Chem Rev; 2004 Mar; 104(3):1687-716. PubMed ID: 15008630
    [No Abstract]   [Full Text] [Related]  

  • 12. Chiral amplification with a stereodynamic triaryl probe: assignment of the absolute configuration and enantiomeric excess of amino alcohols.
    Ghosn MW; Wolf C
    J Am Chem Soc; 2009 Nov; 131(45):16360-1. PubMed ID: 19902975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A chiral porous metal-organic framework for highly sensitive and enantioselective fluorescence sensing of amino alcohols.
    Wanderley MM; Wang C; Wu CD; Lin W
    J Am Chem Soc; 2012 Jun; 134(22):9050-3. PubMed ID: 22607498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reactive extraction of enantiomers of 1,2-amino alcohols via stereoselective thermodynamic and kinetic processes.
    Tang L; Choi S; Nandhakumar R; Park H; Chung H; Chin J; Kim KM
    J Org Chem; 2008 Aug; 73(15):5996-9. PubMed ID: 18598085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfonation of 3,3'-Diformyl-BINOL for Enantioselective Fluorescent Recognition of Amino Acids in Water.
    Zhao F; Wang Y; Wu X; Yu S; Yu X; Pu L
    Chemistry; 2020 Jun; 26(32):7258-7262. PubMed ID: 32128894
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A convenient fluorescent method to simultaneously determine the enantiomeric composition and concentration of functional chiral amines.
    Huang Z; Yu S; Zhao X; Wen K; Xu Y; Yu X; Xu Y; Pu L
    Chemistry; 2014 Dec; 20(50):16458-61. PubMed ID: 25348091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross interaction between auxiliaries: the chirality of amino alcohols by NMR.
    Leiro V; Seco JM; Quiñoá E; Riguera R
    Org Lett; 2008 Jul; 10(13):2729-32. PubMed ID: 18522388
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and (R)- or (S)-1-(1-Naphthyl)ethylamine and Chiral Tethering Group Effect on the Chiral Recognition.
    Agneeswari R; Sung JY; Jo ES; Jeon HY; Tamilavan V; Hyun MH
    Molecules; 2016 Aug; 21(8):. PubMed ID: 27529205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly enantioselective synthesis of chiral cyclic amino alcohols and conhydrine by ruthenium-catalyzed asymmetric hydrogenation.
    Liu S; Xie JH; Li W; Kong WL; Wang LX; Zhou QL
    Org Lett; 2009 Nov; 11(21):4994-7. PubMed ID: 19788265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Enantioselective Potentiometric Sensor for 2-Amino-1-Butanol Based on Chiral Porous Organic Cage CC3-R.
    Wang BJ; Duan AH; Zhang JH; Xie SM; Cao QE; Yuan LM
    Molecules; 2019 Jan; 24(3):. PubMed ID: 30682770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.