These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 17194130)

  • 1. Two- and three-dimensional imaging of multicomponent systems using scanning thermal microscopy and localized thermomechanical analysis.
    Harding L; Wood J; Reading M; Craig DQ
    Anal Chem; 2007 Jan; 79(1):129-39. PubMed ID: 17194130
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of solid dispersions of paracetamol and EUDRAGIT E prepared by hot-melt extrusion using thermal, microthermal and spectroscopic analysis.
    Qi S; Gryczke A; Belton P; Craig DQ
    Int J Pharm; 2008 Apr; 354(1-2):158-67. PubMed ID: 18242020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The development of heated tip force-distance measurements as a novel approach to site-specific characterization of pharmaceutical materials.
    Harding L; Reading M; Craig DQ
    J Pharm Sci; 2008 Jul; 97(7):2768-79. PubMed ID: 17549768
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal probe based analytical microscopy: thermal analysis and photothermal Fourier-transform infrared microspectroscopy together with thermally assisted nanosampling coupled with capillary electrophoresis.
    Dai X; Moffat JG; Mayes AG; Reading M; Craig DQ; Belton PS; Grandy DB
    Anal Chem; 2009 Aug; 81(16):6612-9. PubMed ID: 20337375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An investigation into the use of micro-thermal analysis for the solid state characterisation of an HPMC tablet formulation.
    Royall PG; Craig DQ; Price DM; Reading M; Lever TJ
    Int J Pharm; 1999 Dec; 192(1):97-103. PubMed ID: 10572203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The development of microthermal analysis and photothermal microspectroscopy as novel approaches to drug-excipient compatibility studies.
    Harding L; Qi S; Hill G; Reading M; Craig DQ
    Int J Pharm; 2008 Apr; 354(1-2):149-57. PubMed ID: 18162342
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-dependent quantitative 3omega scanning thermal microscopy: Local thermal conductivity changes in NiTi microstructures induced by martensite-austenite phase transition.
    Chirtoc M; Gibkes J; Wernhardt R; Pelzl J; Wieck A
    Rev Sci Instrum; 2008 Sep; 79(9):093703. PubMed ID: 19044421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The development of thermally assisted particle manipulation and thermal nanointeraction studies as a means of investigating drug-polymer interactions.
    Harding LJ; Reading M; Craig DQ
    J Pharm Sci; 2008 Apr; 97(4):1551-63. PubMed ID: 17705151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the temperature dependence of the mechanical properties of polymers at the nanoscale with band excitation thermal scanning probe microscopy.
    Nikiforov MP; Jesse S; Morozovska AN; Eliseev EA; Germinario LT; Kalinin SV
    Nanotechnology; 2009 Sep; 20(39):395709. PubMed ID: 19726838
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two omega method for active thermocouple microscopy.
    Thiery L; Gavignet E; Cretin B
    Rev Sci Instrum; 2009 Mar; 80(3):034901. PubMed ID: 19334942
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and thermal analysis of submicron silver tubes prepared from electrospun fiber templates.
    Ochanda F; Jones WE
    Langmuir; 2007 Jan; 23(2):795-801. PubMed ID: 17209636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A hot-wire probe for thermal measurements of nanowires and nanotubes inside a transmission electron microscope.
    Dames C; Chen S; Harris CT; Huang JY; Ren ZF; Dresselhaus MS; Chen G
    Rev Sci Instrum; 2007 Oct; 78(10):104903. PubMed ID: 17979450
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of scanning thermal microscopy for investigation of thermal boundaries in multilayered photonic structures.
    Juszczyk J; Krzywiecki M; Kruszka R; Bodzenta J
    Ultramicroscopy; 2013 Dec; 135():95-8. PubMed ID: 23954495
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics.
    Zhou Y; Anglin B; Strachan A
    J Chem Phys; 2007 Nov; 127(18):184702. PubMed ID: 18020653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping amorphous material on a partially crystalline surface: nanothermal analysis for simultaneous characterisation and imaging of lactose compacts.
    Dai X; Reading M; Craig DQ
    J Pharm Sci; 2009 Apr; 98(4):1499-510. PubMed ID: 18752293
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmaceutical applications of micro-thermal analysis.
    Craig DQ; Kett VL; Andrews CS; Royall PG
    J Pharm Sci; 2002 May; 91(5):1201-13. PubMed ID: 11977096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal and thermomechanical properties of poly(butylene succinate) nanocomposites.
    Makhatha ME; Ray SS; Hato J; Luyt AS
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1679-89. PubMed ID: 18572565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatially and temporally resolved thermal imaging of cyclically heated interconnects by use of scanning thermal microscopy.
    Barbosa N; Slifka AJ
    Microsc Res Tech; 2008 Aug; 71(8):579-84. PubMed ID: 18459141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methods for topography artifacts compensation in scanning thermal microscopy.
    Martinek J; Klapetek P; Campbell AC
    Ultramicroscopy; 2015 Aug; 155():55-61. PubMed ID: 25942752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two new microscopical variants of thermomechanical modulation: scanning thermal expansion microscopy and dynamic localized thermomechanical analysis.
    Hammiche A; Price DM; Dupas E; Mills G; Kulik A; Reading M; Weaver JM; Pollock HM
    J Microsc; 2000 Sep; 199 (Pt 3)():180-90. PubMed ID: 10971798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.