BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 17194144)

  • 21. Sequence-specific, electronic detection of oligonucleotides in blood, soil, and foodstuffs with the reagentless, reusable E-DNA sensor.
    Lubin AA; Lai RY; Baker BR; Heeger AJ; Plaxco KW
    Anal Chem; 2006 Aug; 78(16):5671-7. PubMed ID: 16906710
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Colorimetric detection of platelet-derived growth factors through competitive interactions between proteins and functional gold nanoparticles.
    Lin TE; Chen WH; Shiang YC; Huang CC; Chang HT
    Biosens Bioelectron; 2011 Nov; 29(1):204-9. PubMed ID: 21900002
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A hairpin aptamer-based electrochemical biosensing platform for the sensitive detection of proteins.
    Wu ZS; Zheng F; Shen GL; Yu RQ
    Biomaterials; 2009 May; 30(15):2950-5. PubMed ID: 19254812
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor.
    Radi AE; Acero Sánchez JL; Baldrich E; O'Sullivan CK
    J Am Chem Soc; 2006 Jan; 128(1):117-24. PubMed ID: 16390138
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Aptamer conformational switch as sensitive electrochemical biosensor for potassium ion recognition.
    Radi AE; O'Sullivan CK
    Chem Commun (Camb); 2006 Aug; (32):3432-4. PubMed ID: 16896485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electrochemical aptamer sensor for small molecule assays.
    Liu X; Li W; Xu X; Zhou J; Nie Z
    Methods Mol Biol; 2012; 800():119-32. PubMed ID: 21964786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A highly sensitive LED-induced chemiluminescence platform for aptasensing of platelet-derived growth factor.
    Zhang X; Zhang H; Xu S; Sun Y
    Analyst; 2014 Jan; 139(1):133-7. PubMed ID: 24179991
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A simple and direct electrochemical detection of interferon-gamma using its RNA and DNA aptamers.
    Min K; Cho M; Han SY; Shim YB; Ku J; Ban C
    Biosens Bioelectron; 2008 Jul; 23(12):1819-24. PubMed ID: 18406597
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electrochemical biosensor for detection of adenosine based on structure-switching aptamer and amplification with reporter probe DNA modified Au nanoparticles.
    Zhang S; Xia J; Li X
    Anal Chem; 2008 Nov; 80(22):8382-8. PubMed ID: 18939854
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers.
    Lu Y; Zhu N; Yu P; Mao L
    Analyst; 2008 Sep; 133(9):1256-60. PubMed ID: 18709204
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Label-free electrochemical aptasensor for the detection of lysozyme.
    Rodríguez MC; Rivas GA
    Talanta; 2009 Apr; 78(1):212-6. PubMed ID: 19174227
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of serum on an RNA aptamer-based electrochemical sensor for theophylline.
    Ferapontova EE; Gothelf KV
    Langmuir; 2009 Apr; 25(8):4279-83. PubMed ID: 19301828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Aptamer based assay of plated-derived grow factor in unprocessed human plasma sample and MCF-7 breast cancer cell lysates using gold nanoparticle supported α-cyclodextrin.
    Hasanzadeh M; Razmi N; Mokhtarzadeh A; Shadjou N; Mahboob S
    Int J Biol Macromol; 2018 Mar; 108():69-80. PubMed ID: 29180051
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A reagentless signal-on architecture for electronic, aptamer-based sensors via target-induced strand displacement.
    Xiao Y; Piorek BD; Plaxco KW; Heeger AJ
    J Am Chem Soc; 2005 Dec; 127(51):17990-1. PubMed ID: 16366535
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Amplified electrochemical aptasensor taking AuNPs based sandwich sensing platform as a model.
    Li B; Wang Y; Wei H; Dong S
    Biosens Bioelectron; 2008 Feb; 23(7):965-70. PubMed ID: 17997091
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A chronocoulometric aptamer sensor for adenosine monophosphate.
    Shen L; Chen Z; Li Y; Jing P; Xie S; He S; He P; Shao Y
    Chem Commun (Camb); 2007 Jun; (21):2169-71. PubMed ID: 17520125
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrochemical immunosensor of platelet-derived growth factor with aptamer-primed polymerase amplification.
    Huang Y; Nie XM; Gan SL; Jiang JH; Shen GL; Yu RQ
    Anal Biochem; 2008 Nov; 382(1):16-22. PubMed ID: 18675245
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A graphene functionalized electrochemical aptasensor for selective label-free detection of cancer cells.
    Feng L; Chen Y; Ren J; Qu X
    Biomaterials; 2011 Apr; 32(11):2930-7. PubMed ID: 21256585
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Aptamer conjugated Mo(6)S(9-x)I(x) nanowires for direct and highly sensitive electrochemical sensing of thrombin.
    McMullan M; Sun N; Papakonstantinou P; Li M; Zhou W; Mihailovic D
    Biosens Bioelectron; 2011 Jan; 26(5):1853-9. PubMed ID: 20176468
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors.
    Huang CC; Huang YF; Cao Z; Tan W; Chang HT
    Anal Chem; 2005 Sep; 77(17):5735-41. PubMed ID: 16131089
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.