BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 1719435)

  • 1. On-line measurement of nitric oxide release from organic nitrates in the intact coronary circulation.
    Schrör K; Förster S; Woditsch I
    Naunyn Schmiedebergs Arch Pharmacol; 1991 Aug; 344(2):240-6. PubMed ID: 1719435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generation of nitric oxide from organic nitrovasodilators during passage through the coronary vascular bed and its role in coronary vasodilation and nitrate tolerance.
    Schrör K; Woditsch I; Förster S
    Blood Vessels; 1991; 28(1-3):62-6. PubMed ID: 1900446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduced nitric oxide release causes nitrate tolerance in the intact coronary circulation.
    Förster S; Woditsch I; Schröder H; Schrör K
    J Cardiovasc Pharmacol; 1991 Jun; 17(6):867-72. PubMed ID: 1714008
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of NO from molsidomine (SIN-1) in vitro and its relationship to changes in coronary vessel tone.
    Schrör K; Förster S; Woditsch I; Schröder H
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S29-34. PubMed ID: 2484696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thimerosal blocks stimulated but not basal release of endothelium-derived relaxing factor (EDRF) in dog isolated coronary artery.
    Crack P; Cocks T
    Br J Pharmacol; 1992 Oct; 107(2):566-72. PubMed ID: 1384915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduced endothelium-dependent relaxation at enhanced NO release in hearts of hypercholesterolaemic rabbits.
    Woditsch I; Schrör K
    Br J Pharmacol; 1994 Apr; 111(4):1035-40. PubMed ID: 8032587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factors affecting the regional haemodynamic responses to glyceryl trinitrate and molsidomine in conscious rats.
    Phillips K; Gardiner SM; Kemp PA; Bennett T
    Br J Pharmacol; 1991 Sep; 104(1):151-8. PubMed ID: 1786509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low basal and stimulated release of nitric oxide in atherosclerotic epicardial coronary arteries.
    Chester AH; O'Neil GS; Moncada S; Tadjkarimi S; Yacoub MH
    Lancet; 1990 Oct; 336(8720):897-900. PubMed ID: 1699098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of the vasodepressor actions of acetylcholine, bradykinin, substance P and endothelin in the rat by a specific inhibitor of nitric oxide formation.
    Whittle BJ; Lopez-Belmonte J; Rees DD
    Br J Pharmacol; 1989 Oct; 98(2):646-52. PubMed ID: 2479442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of endothelium-dependent relaxations resistant to nitro-L-arginine in the porcine coronary artery.
    Nagao T; Vanhoutte PM
    Br J Pharmacol; 1992 Dec; 107(4):1102-7. PubMed ID: 1467832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-dependent vasodilatation in human epicardial coronary arteries: effect of prolonged exposure to glyceryl trinitrate or SIN-1.
    Kuhn M; Förstermann U
    J Cardiovasc Pharmacol; 1989; 14 Suppl 11():S47-54. PubMed ID: 2484699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nitrovasodilator-induced relaxation and tolerance development in porcine vena cordis magna: dependence on intact endothelium.
    Kojda G; Beck JK; Meyer W; Noack E
    Br J Pharmacol; 1994 Jun; 112(2):533-40. PubMed ID: 7521258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of the molsidomine metabolite SIN-1 on coronary arteries and peripheral vessels of sheep with special reference to tolerance and endothelium.
    Yousif MH; Yousif F; Thulesius O
    Cardiovasc Drugs Ther; 1991 Aug; 5(4):769-73. PubMed ID: 1909561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide synthesis in the regulation of coronary vascular tone in the isolated perfused rabbit heart.
    Smith RE; Palmer RM; Bucknall CA; Moncada S
    Cardiovasc Res; 1992 May; 26(5):508-12. PubMed ID: 1446321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prostacyclin contributes to nitroglycerin-mediated relaxation of human umbilical arteries.
    Klockenbusch W; Schrör K
    J Cardiovasc Pharmacol; 1993 Sep; 22(3):510-1. PubMed ID: 7504146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissimilarity between prostaglandin E1 and nitric oxide donors as potentiators of plasma exudation in the rabbit skin in vivo.
    Mariani-Pedroso SR; Bizeto L; Antunes E; Zatz R; de Nucci G
    Prostaglandins Leukot Essent Fatty Acids; 1995 Jun; 52(6):399-402. PubMed ID: 7644562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of glyceryl trinitrate to nitric oxide by endothelial cells and smooth muscle cells and its induction by Escherichia coli lipopolysaccharide.
    Salvemini D; Mollace V; Pistelli A; Anggard E; Vane J
    Proc Natl Acad Sci U S A; 1992 Feb; 89(3):982-6. PubMed ID: 1310543
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bradykinin-induced, N omega-nitro-L-arginine-insensitive endothelium-dependent relaxation of porcine coronary arteries is not mediated by bioassayable relaxing substances.
    Kauser K; Rubanyi GM
    J Cardiovasc Pharmacol; 1992; 20 Suppl 12():S101-4. PubMed ID: 1282939
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide inhibits vascular bioactivation of glyceryl trinitrate: a novel mechanism to explain preferential venodilation of organic nitrates.
    Kojda G; Patzner M; Hacker A; Noack E
    Mol Pharmacol; 1998 Mar; 53(3):547-54. PubMed ID: 9495823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential sensitivity of proximal and distal coronary arteries to a nitric oxide donor following reperfusion injury or inhibition of nitric oxide synthesis.
    Coughlan MG; Kenny D; Kampine JP; Bosnjak ZJ; Warltier DC
    Cardiovasc Res; 1993 Aug; 27(8):1444-8. PubMed ID: 8221797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.