These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1719447)

  • 1. The emergence of architectonic field structure and areal borders in developing monkey sensorimotor cortex.
    Huntley GW; Jones EG
    Neuroscience; 1991; 44(2):287-310. PubMed ID: 1719447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAA receptor immunoreactivity in adult and developing monkey sensory-motor cortex.
    Huntley GW; de Blas AL; Jones EG
    Exp Brain Res; 1990; 82(3):519-35. PubMed ID: 1963408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal sequence of neurotransmitter expression by developing neurons of fetal monkey visual cortex.
    Huntley GW; Hendry SH; Killackey HP; Chalupa LM; Jones EG
    Brain Res; 1988 Sep; 471(1):69-96. PubMed ID: 2464414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal modulation of GABA(A) receptor subunit gene expression in developing monkey cerebral cortex.
    Huntsman MM; Muñoz A; Jones EG
    Neuroscience; 1999; 91(4):1223-45. PubMed ID: 10391431
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Area 3a in the cat. I. A reevaluation of its location and architecture on the basis of Nissl, myelin, acetylcholinesterase, and cytochrome oxidase staining.
    Avendaño C; Verdu A
    J Comp Neurol; 1992 Jul; 321(3):357-72. PubMed ID: 1380516
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys.
    Jones EG; Coulter JD; Hendry SH
    J Comp Neurol; 1978 Sep; 181(2):291-347. PubMed ID: 99458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hierarchy within human SI: supporting data from cytochrome oxidase, acetylcholinesterase and NADPH-diaphorase staining patterns.
    Eskenasy AC; Clarke S
    Somatosens Mot Res; 2000; 17(2):123-32. PubMed ID: 10895883
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurochemical development of the hippocampal region in the fetal rhesus monkey. I. Early appearance of peptides, calcium-binding proteins, DARPP-32, and monoamine innervation in the entorhinal cortex during the first half of gestation (E47 to E90).
    Berger B; Alvarez C; Goldman-Rakic PS
    Hippocampus; 1993 Jul; 3(3):279-305. PubMed ID: 8353610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of human and macaque sensorimotor areas by integrating architectonic, transmitter receptor, MRI and PET data.
    Zilles K; Schlaug G; Matelli M; Luppino G; Schleicher A; Qü M; Dabringhaus A; Seitz R; Roland PE
    J Anat; 1995 Dec; 187 ( Pt 3)(Pt 3):515-37. PubMed ID: 8586553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of cat somatosensory cortex: structural and metabolic considerations.
    Code RA; Juliano SL
    Cereb Cortex; 1992; 2(3):231-43. PubMed ID: 1324752
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterns of thalamocortical degeneration after ablation of somatosensory cortex in monkeys.
    Chmielowska J; Pons TP
    J Comp Neurol; 1995 Sep; 360(3):377-92. PubMed ID: 8543646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A microcolumnar structure of monkey cerebral cortex revealed by immunocytochemical studies of double bouquet cell axons.
    DeFelipe J; Hendry SH; Hashikawa T; Molinari M; Jones EG
    Neuroscience; 1990; 37(3):655-73. PubMed ID: 1701039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuropeptide-immunoreactive cells and fibers in the developing primate cerebellum.
    Yamashita A; Hayashi M; Shimizu K; Oshima K
    Brain Res Dev Brain Res; 1990 Jan; 51(1):19-25. PubMed ID: 2297893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Architectonic identification of the core region in auditory cortex of macaques, chimpanzees, and humans.
    Hackett TA; Preuss TM; Kaas JH
    J Comp Neurol; 2001 Dec; 441(3):197-222. PubMed ID: 11745645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specialization in pyramidal cell structure in the sensory-motor cortex of the Chacma baboon (Papio ursinus) with comparative notes on macaque and vervet monkeys.
    Elston GN; Benavides-Piccione R; Elston A; Manger PR; Defelipe J
    Anat Rec A Discov Mol Cell Evol Biol; 2005 Sep; 286(1):854-65. PubMed ID: 16100710
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range focal collateralization of axons arising from corticocortical cells in monkey sensory-motor cortex.
    DeFelipe J; Conley M; Jones EG
    J Neurosci; 1986 Dec; 6(12):3749-66. PubMed ID: 2432205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transient patterns of GAP-43 expression during the formation of barrels in the rat somatosensory cortex.
    Erzurumlu RS; Jhaveri S; Benowitz LI
    J Comp Neurol; 1990 Feb; 292(3):443-56. PubMed ID: 2160480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal 3D atlas of the macaque monkey motor and premotor cortex.
    Rapan L; Froudist-Walsh S; Niu M; Xu T; Funck T; Zilles K; Palomero-Gallagher N
    Neuroimage; 2021 Feb; 226():117574. PubMed ID: 33221453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architectonic subdivisions of neocortex in the tree shrew (Tupaia belangeri).
    Wong P; Kaas JH
    Anat Rec (Hoboken); 2009 Jul; 292(7):994-1027. PubMed ID: 19462403
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Areal differences in the laminar distribution of thalamic afferents in cortical fields of the insular, parietal and temporal regions of primates.
    Jones EG; Burton H
    J Comp Neurol; 1976 Jul; 168(2):197-247. PubMed ID: 821974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.