These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 17194496)

  • 41. Effect of DNA damage on PCR amplification efficiency with the relative threshold cycle method.
    Sikorsky JA; Primerano DA; Fenger TW; Denvir J
    Biochem Biophys Res Commun; 2004 Oct; 323(3):823-30. PubMed ID: 15381074
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Establishment of an assay for cloning and sequencing the full-length HLA-Cw gene].
    Deng ZH; Xu YP; Gao SQ; Li DC; Yu Q; Su YQ; Zeng JQ; Yang BC
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2009 Jun; 26(3):258-62. PubMed ID: 19504435
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-molecule polymerase chain reaction reduces bias: application to DNA methylation analysis by bisulfite sequencing.
    Chhibber A; Schroeder BG
    Anal Biochem; 2008 Jun; 377(1):46-54. PubMed ID: 18358818
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A PCR-based protocol for the generation of a recombinant West Nile virus.
    Maeda A; Murata R; Akiyama M; Takashima I; Kariwa H; Watanabe T; Kurane I; Maeda J
    Virus Res; 2009 Sep; 144(1-2):35-43. PubMed ID: 19467726
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Real-time electrochemical monitoring of the polymerase chain reaction by mediated redox catalysis.
    Deféver T; Druet M; Rochelet-Dequaire M; Joannes M; Grossiord C; Limoges B; Marchal D
    J Am Chem Soc; 2009 Aug; 131(32):11433-41. PubMed ID: 19722651
    [TBL] [Abstract][Full Text] [Related]  

  • 46. cDNA amplification by SMART-PCR and suppression subtractive hybridization (SSH)-PCR.
    Hillmann A; Dunne E; Kenny D
    Methods Mol Biol; 2009; 496():223-43. PubMed ID: 18839114
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trehalose as a good candidate for enriching full-length cDNAs in cDNA library construction.
    Chen L; Cao L; Zhou L; Jing Y; Chen Z; Deng C; Shen Y; Chen L
    J Biotechnol; 2007 Jan; 127(3):402-7. PubMed ID: 16950532
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Amplification of GC-rich genes by following a combination strategy of primer design, enhancers and modified PCR cycle conditions.
    Sahdev S; Saini S; Tiwari P; Saxena S; Singh Saini K
    Mol Cell Probes; 2007 Aug; 21(4):303-7. PubMed ID: 17490855
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Increased single-nucleotide discrimination in allele-specific polymerase chain reactions through primer probes bearing nucleobase and 2'-deoxyribose modifications.
    Kranaster R; Marx A
    Chemistry; 2007; 13(21):6115-22. PubMed ID: 17458912
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular typing of HLA genes using whole genome amplified DNA.
    Creary LE; Girdlestone J; Zamora J; Brown J; Navarrete CV
    Transfusion; 2009 Jan; 49(1):57-63. PubMed ID: 18954395
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Circular rapid amplification of cDNA ends for high-throughput extension cloning of partial genes.
    Fu GK; Wang JT; Yang J; Au-Young J; Stuve LL
    Genomics; 2004 Jul; 84(1):205-10. PubMed ID: 15203218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. An efficient unnatural base pair for PCR amplification.
    Hirao I; Mitsui T; Kimoto M; Yokoyama S
    J Am Chem Soc; 2007 Dec; 129(50):15549-55. PubMed ID: 18027940
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR.
    Ahn JH; Kim YJ; Kim T; Song HG; Kang C; Ka JO
    J Microbiol Methods; 2009 Aug; 78(2):216-22. PubMed ID: 19523498
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Amplification of 5' end cDNA with 'new RACE'.
    Scotto-Lavino E; Du G; Frohman MA
    Nat Protoc; 2006; 1(6):3056-61. PubMed ID: 17406568
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Amplification of representative cDNA pools from microscopic amounts of animal tissue.
    Matz MV
    Methods Mol Biol; 2003; 221():103-16. PubMed ID: 12703737
    [No Abstract]   [Full Text] [Related]  

  • 56. New insights into the de novo gene synthesis using the automatic kinetics switch approach.
    Cheong WC; Lim LS; Huang MC; Bode M; Li MH
    Anal Biochem; 2010 Nov; 406(1):51-60. PubMed ID: 20599643
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Information theory-based algorithm for in silico prediction of PCR products with whole genomic sequences as templates.
    Cao Y; Wang L; Xu K; Kou C; Zhang Y; Wei G; He J; Wang Y; Zhao L
    BMC Bioinformatics; 2005 Jul; 6():190. PubMed ID: 16042814
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cloning and expression of the cathepsin F-like cysteine protease gene in Escherichia coli and its characterization.
    Joo HS; Koo KB; Park KI; Bae SH; Yun JW; Chang CS; Choi JW
    J Microbiol; 2007 Apr; 45(2):158-67. PubMed ID: 17483802
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Anti-primer quenching-based real-time PCR for simplex or multiplex DNA quantification and single-nucleotide polymorphism genotyping.
    Li J; Makrigiorgos GM
    Nat Protoc; 2007; 2(1):50-8. PubMed ID: 17401338
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multiplex quantitative competitive polymerase chain reaction based on a multianalyte hybridization assay performed on spectrally encoded microspheres.
    Kalogianni DP; Elenis DS; Christopoulos TK; Ioannou PC
    Anal Chem; 2007 Sep; 79(17):6655-61. PubMed ID: 17645311
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.