BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 17194536)

  • 1. Prazosin increases immobility episodes in taiep rats without changes in the properties of alpha1 receptors.
    Cortés MD; Arias-Montaño JA; Eguibar JR
    Neurosci Lett; 2007 Jan; 412(2):159-62. PubMed ID: 17194536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activation of serotonin 5-HT1-receptors decreased gripping-induced immobility episodes in taiep rats.
    Ita ML; Cortés Mdel C; Valencia J; Eguibar JR
    Neurosci Lett; 2009 Jan; 449(2):147-50. PubMed ID: 18996171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. alpha2 adrenoceptors are involved in the regulation of the gripping-induced immobility episodes in taiep rats.
    Eguibar JR; Cortés Mdel C; Valencia J; Arias-Montaño JA
    Synapse; 2006 Oct; 60(5):362-70. PubMed ID: 16838363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Serotonergic-postsynaptic receptors modulate gripping-induced immobility episodes in male taiep rats.
    Eguibar JR; Cortés MC; Ita ML
    Synapse; 2009 Sep; 63(9):737-44. PubMed ID: 19484723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the spontaneous and gripping-induced immobility episodes on taiep rats.
    Cortés Mdel C; Gavito B; Ita ML; Valencia J; Eguibar JR
    Synapse; 2005 Nov; 58(2):95-101. PubMed ID: 16088950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic dopaminergic agonists increased gripping-generated immobility episodes in the myelin-mutant taiep rat.
    Eguibar JR; Cortés Mdel C; Lara-Lozano M
    Neurosci Lett; 2010 Oct; 483(3):189-92. PubMed ID: 20692320
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of alpha and beta adrenoceptors in locus coeruleus stimulation-induced reduction in rapid eye movement sleep in freely moving rats.
    Mallick BN; Singh S; Pal D
    Behav Brain Res; 2005 Mar; 158(1):9-21. PubMed ID: 15680190
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Central alpha 1 adrenoceptor subtypes in narcolepsy-cataplexy: a disorder of REM sleep.
    Mignot E; Guilleminault C; Bowersox S; Frusthofer B; Nishino S; Maddaluno J; Ciaranello R; Dement WC
    Brain Res; 1989 Jun; 490(1):186-91. PubMed ID: 2569353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep and EEG disturbances in a rat neurological mutant (taiep) with immobility episodes: a model of narcolepsy-cataplexy.
    Prieto GJ; Urbá-Holmgren R; Holmgren B
    Electroencephalogr Clin Neurophysiol; 1991 Aug; 79(2):141-7. PubMed ID: 1713828
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Further characterization of the alpha-1 receptor subtype involved in the control of cataplexy in canine narcolepsy.
    Nishino S; Fruhstorfer B; Arrigoni J; Guilleminault C; Dement WC; Mignot E
    J Pharmacol Exp Ther; 1993 Mar; 264(3):1079-84. PubMed ID: 8095546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of repeated treatment with mirtazapine on the central alpha1-adrenergic receptors.
    Rogoz Z; Wrobel A; Dlaboga D; Maj J; Dziedzicka-Wasylewska M
    J Physiol Pharmacol; 2002 Mar; 53(1):105-16. PubMed ID: 11939713
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of dopamine D1 receptors and alpha1-adrenoceptors in the antidepressant-like effect of chlorpheniramine in the mouse tail suspension test.
    Hirano S; Miyata S; Onodera K; Kamei J
    Eur J Pharmacol; 2007 May; 562(1-2):72-6. PubMed ID: 17328889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of CNS alpha1-adrenoceptor activity in central fos responses to novelty.
    Stone EA; Yan L; Ahsan MR; Lehmann ML; Yeretsian J; Quartermain D
    Synapse; 2006 Apr; 59(5):299-307. PubMed ID: 16419046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of central alpha1- and alpha2-adrenoceptors on cardiovascular responses to moxonidine.
    Moreira TS; Takakura AC; Menani JV; Colombari E
    Eur J Pharmacol; 2007 Jun; 563(1-3):164-71. PubMed ID: 17382316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noradrenergic modulation of ephedrine-induced hypophagia.
    Wellman PJ; Miller DK; Ho DH
    Synapse; 2003 Apr; 48(1):18-24. PubMed ID: 12557268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of alpha1- and alpha2-adrenoceptors in the regulation of locomotion and spatial behavior in the active place avoidance task: a dose-response study.
    Stuchlik A; Vales K
    Neurosci Lett; 2008 Mar; 433(3):235-40. PubMed ID: 18255226
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological blockade of brain alpha1-adrenoceptors as measured by ex vivo [3H]prazosin binding is correlated with behavioral immobility.
    Stone EA; Rosengarten H; Lin Y; Quartermain D
    Eur J Pharmacol; 2001 May; 420(2-3):97-102. PubMed ID: 11408030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding of [(3)H]prazosin to alpha(1A)- and alpha(1B)-adrenoceptors, and to a cimetidine-sensitive non-alpha(1) binding site in rat kidney membranes.
    Mugisha P; Gründemann D; Schömig E; Uhlén S
    Naunyn Schmiedebergs Arch Pharmacol; 2002 May; 365(5):335-40. PubMed ID: 12012018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytomorphometric changes in rat brain neurons after rapid eye movement sleep deprivation.
    Majumdar S; Mallick BN
    Neuroscience; 2005; 135(3):679-90. PubMed ID: 16154283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prazosin modulates rapid eye movement sleep deprivation-induced changes in body temperature in rats.
    Jaiswal MK; Mallick BN
    J Sleep Res; 2009 Sep; 18(3):349-56. PubMed ID: 19552734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.