BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 17194706)

  • 1. Molecular properties of rhodopsin and rod function.
    Imai H; Kefalov V; Sakurai K; Chisaka O; Ueda Y; Onishi A; Morizumi T; Fu Y; Ichikawa K; Nakatani K; Honda Y; Chen J; Yau KW; Shichida Y
    J Biol Chem; 2007 Mar; 282(9):6677-84. PubMed ID: 17194706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological properties of rod photoreceptor cells in green-sensitive cone pigment knock-in mice.
    Sakurai K; Onishi A; Imai H; Chisaka O; Ueda Y; Usukura J; Nakatani K; Shichida Y
    J Gen Physiol; 2007 Jul; 130(1):21-40. PubMed ID: 17591985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Signaling states of rhodopsin in rod disk membranes lacking transducin βγ-complex.
    Lomonosova E; Kolesnikov AV; Kefalov VJ; Kisselev OG
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1225-33. PubMed ID: 22266510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rhodopsin kinase and arrestin binding control the decay of photoactivated rhodopsin and dark adaptation of mouse rods.
    Frederiksen R; Nymark S; Kolesnikov AV; Berry JD; Adler L; Koutalos Y; Kefalov VJ; Cornwall MC
    J Gen Physiol; 2016 Jul; 148(1):1-11. PubMed ID: 27353443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of recoverin in rod photoreceptor light adaptation.
    Morshedian A; Woodruff ML; Fain GL
    J Physiol; 2018 Apr; 596(8):1513-1526. PubMed ID: 29435986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Arrestin competition influences the kinetics and variability of the single-photon responses of mammalian rod photoreceptors.
    Doan T; Azevedo AW; Hurley JB; Rieke F
    J Neurosci; 2009 Sep; 29(38):11867-79. PubMed ID: 19776273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of rhodopsin deactivation and its role in regulating recovery and reproducibility of rod photoresponse.
    Caruso G; Bisegna P; Lenoci L; Andreucci D; Gurevich VV; Hamm HE; DiBenedetto E
    PLoS Comput Biol; 2010 Dec; 6(12):e1001031. PubMed ID: 21200415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
    Chan S; Rubin WW; Mendez A; Liu X; Song X; Hanson SM; Craft CM; Gurevich VV; Burns ME; Chen J
    Invest Ophthalmol Vis Sci; 2007 May; 48(5):1968-75. PubMed ID: 17460248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodopsin expression level affects rod outer segment morphology and photoresponse kinetics.
    Makino CL; Wen XH; Michaud NA; Covington HI; DiBenedetto E; Hamm HE; Lem J; Caruso G
    PLoS One; 2012; 7(5):e37832. PubMed ID: 22662234
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
    Berry J; Frederiksen R; Yao Y; Nymark S; Chen J; Cornwall C
    J Neurosci; 2016 Jun; 36(26):6973-87. PubMed ID: 27358455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the Role of Rhodopsin
    Poria D; Kolesnikov AV; Lee TJ; Salom D; Palczewski K; Kefalov VJ
    eNeuro; 2023 Mar; 10(3):. PubMed ID: 36823167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Position of rhodopsin photoisomerization on the disk surface confers variability to the rising phase of the single photon response in vertebrate rod photoreceptors.
    Caruso G; Klaus CJ; Hamm HE; Gurevich VV; Makino CL; DiBenedetto E
    PLoS One; 2020; 15(10):e0240527. PubMed ID: 33052986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport of truncated rhodopsin and its effects on rod function and degeneration.
    Lee ES; Flannery JG
    Invest Ophthalmol Vis Sci; 2007 Jun; 48(6):2868-76. PubMed ID: 17525223
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative modeling of the molecular steps underlying shut-off of rhodopsin activity in rod phototransduction.
    Lamb TD; Kraft TW
    Mol Vis; 2016; 22():674-96. PubMed ID: 27375353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Signaling properties of a short-wave cone visual pigment and its role in phototransduction.
    Shi G; Yau KW; Chen J; Kefalov VJ
    J Neurosci; 2007 Sep; 27(38):10084-93. PubMed ID: 17881515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Abnormal activation and inactivation mechanisms of rod transduction in patients with autosomal dominant retinitis pigmentosa and the pro-23-his mutation.
    Birch DG; Hood DC; Nusinowitz S; Pepperberg DR
    Invest Ophthalmol Vis Sci; 1995 Jul; 36(8):1603-14. PubMed ID: 7601641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Progressive reduction of its expression in rods reveals two pools of arrestin-1 in the outer segment with different roles in photoresponse recovery.
    Cleghorn WM; Tsakem EL; Song X; Vishnivetskiy SA; Seo J; Chen J; Gurevich EV; Gurevich VV
    PLoS One; 2011; 6(7):e22797. PubMed ID: 21818392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Opsin localization and rhodopsin photochemistry in a transgenic mouse model of retinitis pigmentosa.
    Wu TH; Ting TD; Okajima TI; Pepperberg DR; Ho YK; Ripps H; Naash MI
    Neuroscience; 1998 Dec; 87(3):709-17. PubMed ID: 9758235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prolonged photoresponses in transgenic mouse rods lacking arrestin.
    Xu J; Dodd RL; Makino CL; Simon MI; Baylor DA; Chen J
    Nature; 1997 Oct; 389(6650):505-9. PubMed ID: 9333241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.