BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 17194720)

  • 1. Mass spectrometry-based detection of transfer RNAs by their signature endonuclease digestion products.
    Hossain M; Limbach PA
    RNA; 2007 Feb; 13(2):295-303. PubMed ID: 17194720
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix-assisted laser desorption/ionization mass spectrometry screening for pseudouridine in mixtures of small RNAs by chemical derivatization, RNase digestion and signature products.
    Durairaj A; Limbach PA
    Rapid Commun Mass Spectrom; 2008 Dec; 22(23):3727-34. PubMed ID: 18973194
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple endonucleases improve MALDI-MS signature digestion product detection of bacterial transfer RNAs.
    Hossain M; Limbach PA
    Anal Bioanal Chem; 2009 Jun; 394(4):1125-35. PubMed ID: 19104781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relative quantitation of transfer RNAs using liquid chromatography mass spectrometry and signature digestion products.
    Castleberry CM; Limbach PA
    Nucleic Acids Res; 2010 Sep; 38(16):e162. PubMed ID: 20587503
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Global identification of transfer RNAs by liquid chromatography-mass spectrometry (LC-MS).
    Wetzel C; Limbach PA
    J Proteomics; 2012 Jun; 75(12):3450-64. PubMed ID: 21982830
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of pseudouridine and other modifications in tRNA by cyanoethylation and MALDI mass spectrometry.
    Mengel-Jørgensen J; Kirpekar F
    Nucleic Acids Res; 2002 Dec; 30(23):e135. PubMed ID: 12466567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the mass-silent post-transcriptionally modified nucleoside pseudouridine in RNA by matrix-assisted laser desorption/ionization mass spectrometry.
    Patteson KG; Rodicio LP; Limbach PA
    Nucleic Acids Res; 2001 May; 29(10):E49-9. PubMed ID: 11353094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometry sequencing of transfer ribonucleic acids by the comparative analysis of RNA digests (CARD) approach.
    Li S; Limbach PA
    Analyst; 2013 Mar; 138(5):1386-94. PubMed ID: 23295341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The global identification of tRNA isoacceptors by targeted tandem mass spectrometry.
    Wetzel C; Limbach PA
    Analyst; 2013 Oct; 138(20):6063-72. PubMed ID: 23954863
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Minimizing 18O/16O back-exchange in the relative quantification of ribonucleic acids.
    Castleberry CM; Lilleness K; Baldauff R; Limbach PA
    J Mass Spectrom; 2009 Aug; 44(8):1195-202. PubMed ID: 19484804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic de-isotoping for improved LC-MS characterization of modified RNAs.
    Wetzel C; Li S; Limbach PA
    J Am Soc Mass Spectrom; 2014 Jul; 25(7):1114-23. PubMed ID: 24760295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry.
    Paulines MJ; Limbach PA
    J Am Soc Mass Spectrom; 2017 Mar; 28(3):551-561. PubMed ID: 28105550
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Presence and location of modified nucleotides in Escherichia coli tmRNA: structural mimicry with tRNA acceptor branches.
    Felden B; Hanawa K; Atkins JF; Himeno H; Muto A; Gesteland RF; McCloskey JA; Crain PF
    EMBO J; 1998 Jun; 17(11):3188-96. PubMed ID: 9606200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS.
    Cao X; Limbach PA
    Anal Chem; 2015 Aug; 87(16):8433-40. PubMed ID: 26176336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 5 S RNA-protein complex is involved in ribosomal subunit association.
    Metspalu E; Ustav M; Villems R
    FEBS Lett; 1983 Mar; 153(1):125-7. PubMed ID: 6186532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identity determinants of E. coli tRNAs.
    Hasegawa T; Himeno H; Asahara H; Tamura K; Nameki N; Watanabe K; Shimizu M
    Nucleic Acids Symp Ser; 1991; (25):153-4. PubMed ID: 1726805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The primary structure of non-initiator methionine transfer ribonucleic acid from Bakers' yeast. I. Purification and complete digestion with ribonuclease T1 and pancreatic ribonuclease A.
    Koiwai O; Miyazaki M
    J Biochem; 1976 Nov; 80(5):937-50. PubMed ID: 826524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A liquid chromatography/electrospray mass spectrometric study on the post-transcriptional modification of tRNA.
    Taniguchi H; Hayashi N
    Nucleic Acids Res; 1998 Mar; 26(6):1481-6. PubMed ID: 9490795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel method for sequence placement of modified nucleotides in mixtures of transfer RNA.
    Wagner TM; Nair V; Guymon R; Pomerantz SC; Crain PF; Davis DR; McCloskey JA
    Nucleic Acids Symp Ser (Oxf); 2004; (48):263-4. PubMed ID: 17150579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphoseryl-tRNA in Escherichia coli.
    Mizutani T; Maruyama N; Kurata H
    Nucleic Acids Symp Ser; 1989; (21):25-6. PubMed ID: 2481840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.