BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17195472)

  • 1. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action.
    Bandow JE; Hecker M
    Prog Drug Res; 2007; 64():79, 81-101. PubMed ID: 17195472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics.
    Reddy PJ; Ray S; Sathe GJ; Gajbhiye A; Prasad TS; Rapole S; Panda D; Srivastava S
    J Proteomics; 2015 Jan; 114():247-62. PubMed ID: 25464363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life.
    Hecker M
    Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.
    Reddy PJ; Sinha S; Ray S; Sathe GJ; Chatterjee A; Prasad TS; Dhali S; Srikanth R; Panda D; Srivastava S
    PLoS One; 2015; 10(4):e0120620. PubMed ID: 25874956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic approach to understanding antibiotic action.
    Bandow JE; Brötz H; Leichert LI; Labischinski H; Hecker M
    Antimicrob Agents Chemother; 2003 Mar; 47(3):948-55. PubMed ID: 12604526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics.
    Hecker M; Völker U
    Proteomics; 2004 Dec; 4(12):3727-50. PubMed ID: 15540212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity.
    Randazzo P; Anba-Mondoloni J; Aubert-Frambourg A; Guillot A; Pechoux C; Vidic J; Auger S
    J Bacteriol; 2020 Feb; 202(5):. PubMed ID: 31818924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic signatures for daunomycin and adriamycin in Bacillus subtilis.
    Sender U; Bandow J; Engelmann S; Lindequist U; Hecker M
    Pharmazie; 2004 Jan; 59(1):65-70. PubMed ID: 14964425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial proteomics and its role in antibacterial drug discovery.
    Brötz-Oesterhelt H; Bandow JE; Labischinski H
    Mass Spectrom Rev; 2005; 24(4):549-65. PubMed ID: 15389844
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches.
    Wolff S; Antelmann H; Albrecht D; Becher D; Bernhardt J; Bron S; Büttner K; van Dijl JM; Eymann C; Otto A; Tam le T; Hecker M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):129-40. PubMed ID: 17055787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research.
    Schäkermann S; Prochnow P; Bandow JE
    Methods Mol Biol; 2017; 1520():291-306. PubMed ID: 27873260
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation.
    Senges CHR; Stepanek JJ; Wenzel M; Raatschen N; Ay Ü; Märtens Y; Prochnow P; Vázquez Hernández M; Yayci A; Schubert B; Janzing NBM; Warmuth HL; Kozik M; Bongard J; Alumasa JN; Albada B; Penkova M; Lukežič T; Sorto NA; Lorenz N; Miller RG; Zhu B; Benda M; Stülke J; Schäkermann S; Leichert LI; Scheinpflug K; Brötz-Oesterhelt H; Hertweck C; Shaw JT; Petković H; Brunel JM; Keiler KC; Metzler-Nolte N; Bandow JE
    Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33046497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis.
    Völker U; Hecker M
    Cell Microbiol; 2005 Aug; 7(8):1077-85. PubMed ID: 16008575
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis.
    Antelmann H; Hecker M; Zuber P
    Expert Rev Proteomics; 2008 Feb; 5(1):77-90. PubMed ID: 18282125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis.
    Antelmann H; Bernhardt J; Schmid R; Mach H; Völker U; Hecker M
    Electrophoresis; 1997 Aug; 18(8):1451-63. PubMed ID: 9298659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic stress adaptation of Bacillus subtilis to tetracycline exposure.
    Shen J; Liu Z; Yu H; Ye J; Long Y; Zhou P; He B
    Ecotoxicol Environ Saf; 2020 Jan; 188():109910. PubMed ID: 31740237
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies.
    Wüllner D; Haupt A; Prochnow P; Leontiev R; Slusarenko AJ; Bandow JE
    Proteomics; 2019 Dec; 19(24):e1900064. PubMed ID: 31622046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis.
    Otto A; Bernhardt J; Meyer H; Schaffer M; Herbst FA; Siebourg J; Mäder U; Lalk M; Hecker M; Becher D
    Nat Commun; 2010; 1():137. PubMed ID: 21266987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies.
    Wenzel M; Patra M; Albrecht D; Chen DY; Nicolaou KC; Metzler-Nolte N; Bandow JE
    Antimicrob Agents Chemother; 2011 Jun; 55(6):2590-6. PubMed ID: 21383089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach.
    Antelmann H; Yamamoto H; Sekiguchi J; Hecker M
    Proteomics; 2002 May; 2(5):591-602. PubMed ID: 11987133
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.