These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 17195472)
1. Proteomic profiling of cellular stresses in Bacillus subtilis reveals cellular networks and assists in elucidating antibiotic mechanisms of action. Bandow JE; Hecker M Prog Drug Res; 2007; 64():79, 81-101. PubMed ID: 17195472 [TBL] [Abstract][Full Text] [Related]
2. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics. Reddy PJ; Ray S; Sathe GJ; Gajbhiye A; Prasad TS; Rapole S; Panda D; Srivastava S J Proteomics; 2015 Jan; 114():247-62. PubMed ID: 25464363 [TBL] [Abstract][Full Text] [Related]
3. A proteomic view of cell physiology of Bacillus subtilis--bringing the genome sequence to life. Hecker M Adv Biochem Eng Biotechnol; 2003; 83():57-92. PubMed ID: 12934926 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment. Reddy PJ; Sinha S; Ray S; Sathe GJ; Chatterjee A; Prasad TS; Dhali S; Srikanth R; Panda D; Srivastava S PLoS One; 2015; 10(4):e0120620. PubMed ID: 25874956 [TBL] [Abstract][Full Text] [Related]
6. Towards a comprehensive understanding of Bacillus subtilis cell physiology by physiological proteomics. Hecker M; Völker U Proteomics; 2004 Dec; 4(12):3727-50. PubMed ID: 15540212 [TBL] [Abstract][Full Text] [Related]
7. Bacillus subtilis Regulators MntR and Zur Participate in Redox Cycling, Antibiotic Sensitivity, and Cell Wall Plasticity. Randazzo P; Anba-Mondoloni J; Aubert-Frambourg A; Guillot A; Pechoux C; Vidic J; Auger S J Bacteriol; 2020 Feb; 202(5):. PubMed ID: 31818924 [TBL] [Abstract][Full Text] [Related]
8. Proteomic signatures for daunomycin and adriamycin in Bacillus subtilis. Sender U; Bandow J; Engelmann S; Lindequist U; Hecker M Pharmazie; 2004 Jan; 59(1):65-70. PubMed ID: 14964425 [TBL] [Abstract][Full Text] [Related]
9. Bacterial proteomics and its role in antibacterial drug discovery. Brötz-Oesterhelt H; Bandow JE; Labischinski H Mass Spectrom Rev; 2005; 24(4):549-65. PubMed ID: 15389844 [TBL] [Abstract][Full Text] [Related]
10. Towards the entire proteome of the model bacterium Bacillus subtilis by gel-based and gel-free approaches. Wolff S; Antelmann H; Albrecht D; Becher D; Bernhardt J; Bron S; Büttner K; van Dijl JM; Eymann C; Otto A; Tam le T; Hecker M J Chromatogr B Analyt Technol Biomed Life Sci; 2007 Apr; 849(1-2):129-40. PubMed ID: 17055787 [TBL] [Abstract][Full Text] [Related]
11. Label-Free Quantitation of Ribosomal Proteins from Bacillus subtilis for Antibiotic Research. Schäkermann S; Prochnow P; Bandow JE Methods Mol Biol; 2017; 1520():291-306. PubMed ID: 27873260 [TBL] [Abstract][Full Text] [Related]
12. Comparison of Proteomic Responses as Global Approach to Antibiotic Mechanism of Action Elucidation. Senges CHR; Stepanek JJ; Wenzel M; Raatschen N; Ay Ü; Märtens Y; Prochnow P; Vázquez Hernández M; Yayci A; Schubert B; Janzing NBM; Warmuth HL; Kozik M; Bongard J; Alumasa JN; Albada B; Penkova M; Lukežič T; Sorto NA; Lorenz N; Miller RG; Zhu B; Benda M; Stülke J; Schäkermann S; Leichert LI; Scheinpflug K; Brötz-Oesterhelt H; Hertweck C; Shaw JT; Petković H; Brunel JM; Keiler KC; Metzler-Nolte N; Bandow JE Antimicrob Agents Chemother; 2020 Dec; 65(1):. PubMed ID: 33046497 [TBL] [Abstract][Full Text] [Related]
13. From genomics via proteomics to cellular physiology of the Gram-positive model organism Bacillus subtilis. Völker U; Hecker M Cell Microbiol; 2005 Aug; 7(8):1077-85. PubMed ID: 16008575 [TBL] [Abstract][Full Text] [Related]
14. Proteomic signatures uncover thiol-specific electrophile resistance mechanisms in Bacillus subtilis. Antelmann H; Hecker M; Zuber P Expert Rev Proteomics; 2008 Feb; 5(1):77-90. PubMed ID: 18282125 [TBL] [Abstract][Full Text] [Related]
15. First steps from a two-dimensional protein index towards a response-regulation map for Bacillus subtilis. Antelmann H; Bernhardt J; Schmid R; Mach H; Völker U; Hecker M Electrophoresis; 1997 Aug; 18(8):1451-63. PubMed ID: 9298659 [TBL] [Abstract][Full Text] [Related]
16. Systematic stress adaptation of Bacillus subtilis to tetracycline exposure. Shen J; Liu Z; Yu H; Ye J; Long Y; Zhou P; He B Ecotoxicol Environ Saf; 2020 Jan; 188():109910. PubMed ID: 31740237 [TBL] [Abstract][Full Text] [Related]
17. Interspecies Comparison of the Bacterial Response to Allicin Reveals Species-Specific Defense Strategies. Wüllner D; Haupt A; Prochnow P; Leontiev R; Slusarenko AJ; Bandow JE Proteomics; 2019 Dec; 19(24):e1900064. PubMed ID: 31622046 [TBL] [Abstract][Full Text] [Related]
18. Systems-wide temporal proteomic profiling in glucose-starved Bacillus subtilis. Otto A; Bernhardt J; Meyer H; Schaffer M; Herbst FA; Siebourg J; Mäder U; Lalk M; Hecker M; Becher D Nat Commun; 2010; 1():137. PubMed ID: 21266987 [TBL] [Abstract][Full Text] [Related]
19. Proteomic signature of fatty acid biosynthesis inhibition available for in vivo mechanism-of-action studies. Wenzel M; Patra M; Albrecht D; Chen DY; Nicolaou KC; Metzler-Nolte N; Bandow JE Antimicrob Agents Chemother; 2011 Jun; 55(6):2590-6. PubMed ID: 21383089 [TBL] [Abstract][Full Text] [Related]
20. Stabilization of cell wall proteins in Bacillus subtilis: a proteomic approach. Antelmann H; Yamamoto H; Sekiguchi J; Hecker M Proteomics; 2002 May; 2(5):591-602. PubMed ID: 11987133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]