These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 17195474)

  • 1. A subsystems-based approach to the identification of drug targets in bacterial pathogens.
    Osterman AL; Begley TP
    Prog Drug Res; 2007; 64():131, 133-70. PubMed ID: 17195474
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibitors of FabI, an enzyme drug target in the bacterial fatty acid biosynthesis pathway.
    Lu H; Tonge PJ
    Acc Chem Res; 2008 Jan; 41(1):11-20. PubMed ID: 18193820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From genetic footprinting to antimicrobial drug targets: examples in cofactor biosynthetic pathways.
    Gerdes SY; Scholle MD; D'Souza M; Bernal A; Baev MV; Farrell M; Kurnasov OV; Daugherty MD; Mseeh F; Polanuyer BM; Campbell JW; Anantha S; Shatalin KY; Chowdhury SA; Fonstein MY; Osterman AL
    J Bacteriol; 2002 Aug; 184(16):4555-72. PubMed ID: 12142426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A view of development of new antibacterial agents with novel targets].
    Watanabe Y; Minami S
    Nihon Rinsho; 2003 Mar; 61 Suppl 3():248-53. PubMed ID: 12717979
    [No Abstract]   [Full Text] [Related]  

  • 5. Comparative genomics of NAD(P) biosynthesis and novel antibiotic drug targets.
    Bi J; Wang H; Xie J
    J Cell Physiol; 2011 Feb; 226(2):331-40. PubMed ID: 20857400
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The potential of bacterial fatty acid biosynthetic enzymes as a source of novel antibacterial agents.
    Payne DJ
    Drug News Perspect; 2004 Apr; 17(3):187-94. PubMed ID: 15179453
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale metabolic models as platforms for identification of novel genes as antimicrobial drug targets.
    Mienda BS; Salihu R; Adamu A; Idris S
    Future Microbiol; 2018 Mar; 13():455-467. PubMed ID: 29469596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The National Microbial Pathogen Database Resource (NMPDR): a genomics platform based on subsystem annotation.
    McNeil LK; Reich C; Aziz RK; Bartels D; Cohoon M; Disz T; Edwards RA; Gerdes S; Hwang K; Kubal M; Margaryan GR; Meyer F; Mihalo W; Olsen GJ; Olson R; Osterman A; Paarmann D; Paczian T; Parrello B; Pusch GD; Rodionov DA; Shi X; Vassieva O; Vonstein V; Zagnitko O; Xia F; Zinner J; Overbeek R; Stevens R
    Nucleic Acids Res; 2007 Jan; 35(Database issue):D347-53. PubMed ID: 17145713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unraveling novel broad-spectrum antibacterial targets in food and waterborne pathogens using comparative genomics and protein interaction network analysis.
    Jadhav A; Shanmugham B; Rajendiran A; Pan A
    Infect Genet Evol; 2014 Oct; 27():300-8. PubMed ID: 25128740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomic approaches to antibacterial discovery.
    Payne DJ; Gwynn MN; Holmes DJ; Rosenberg M
    Methods Mol Biol; 2004; 266():231-59. PubMed ID: 15148422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triclosan: a widely used biocide and its link to antibiotics.
    Schweizer HP
    FEMS Microbiol Lett; 2001 Aug; 202(1):1-7. PubMed ID: 11506900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of genomics to select antibacterial targets.
    Pucci MJ
    Biochem Pharmacol; 2006 Mar; 71(7):1066-72. PubMed ID: 16412986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enoyl acyl carrier protein reductase inhibitors: a patent review (2006 - 2010).
    Lu X; Huang K; You Q
    Expert Opin Ther Pat; 2011 Jul; 21(7):1007-22. PubMed ID: 21651455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of constraint-based modeling for the prediction and validation of antimicrobial targets.
    Trawick JD; Schilling CH
    Biochem Pharmacol; 2006 Mar; 71(7):1026-35. PubMed ID: 16329998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of the bacterial enoyl reductase FabI by triclosan: a structure-reactivity analysis of FabI inhibition by triclosan analogues.
    Sivaraman S; Sullivan TJ; Johnson F; Novichenok P; Cui G; Simmerling C; Tonge PJ
    J Med Chem; 2004 Jan; 47(3):509-18. PubMed ID: 14736233
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The targets of currently used antibacterial agents: lessons for drug discovery.
    Lange RP; Locher HH; Wyss PC; Then RL
    Curr Pharm Des; 2007; 13(30):3140-54. PubMed ID: 17979755
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural basis and mechanism of enoyl reductase inhibition by triclosan.
    Stewart MJ; Parikh S; Xiao G; Tonge PJ; Kisker C
    J Mol Biol; 1999 Jul; 290(4):859-65. PubMed ID: 10398587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Triclosan Resistome from Metagenome Reveals Diverse Enoyl Acyl Carrier Protein Reductases and Selective Enrichment of Triclosan Resistance Genes.
    Khan R; Kong HG; Jung YH; Choi J; Baek KY; Hwang EC; Lee SW
    Sci Rep; 2016 Aug; 6():32322. PubMed ID: 27577999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel targets for the future development of antibacterial agents.
    McDevitt D; Payne DJ; Holmes DJ; Rosenberg M
    Symp Ser Soc Appl Microbiol; 2002; (31):28S-34S. PubMed ID: 12481826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis, biological evaluation and in silico molecular modeling of pyrrolyl benzohydrazide derivatives as enoyl ACP reductase inhibitors.
    Joshi SD; Dixit SR; Kulkarni VH; Lherbet C; Nadagouda MN; Aminabhavi TM
    Eur J Med Chem; 2017 Jan; 126():286-297. PubMed ID: 27889632
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.