These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 17196033)

  • 1. Prediction of amyloidogenic and disordered regions in protein chains.
    Galzitskaya OV; Garbuzynskiy SO; Lobanov MY
    PLoS Comput Biol; 2006 Dec; 2(12):e177. PubMed ID: 17196033
    [TBL] [Abstract][Full Text] [Related]  

  • 2. FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence.
    Garbuzynskiy SO; Lobanov MY; Galzitskaya OV
    Bioinformatics; 2010 Feb; 26(3):326-32. PubMed ID: 20019059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Is it possible to predict amyloidogenic regions from sequence alone?
    Galzitskaya OV; Garbuzynskiy SO; Lobanov MY
    J Bioinform Comput Biol; 2006 Apr; 4(2):373-88. PubMed ID: 16819789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [A search for amyloidogenic regions in protein chain].
    Galzitskaia OV; Garbuzinskiĭ SA; Lobanov MIu
    Mol Biol (Mosk); 2006; 40(5):910-8. PubMed ID: 17086993
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are the same or different amino acid residues responsible for correct and incorrect protein folding?
    Galzitskaya OV
    Biochemistry (Mosc); 2009 Feb; 74(2):186-93. PubMed ID: 19267674
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FoldUnfold: web server for the prediction of disordered regions in protein chain.
    Galzitskaya OV; Garbuzynskiy SO; Lobanov MY
    Bioinformatics; 2006 Dec; 22(23):2948-9. PubMed ID: 17021161
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using chirality to probe the conformational dynamics and assembly of intrinsically disordered amyloid proteins.
    Raskatov JA; Teplow DB
    Sci Rep; 2017 Oct; 7(1):12433. PubMed ID: 28970487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FISH Amyloid - a new method for finding amyloidogenic segments in proteins based on site specific co-occurrence of aminoacids.
    Gasior P; Kotulska M
    BMC Bioinformatics; 2014 Feb; 15():54. PubMed ID: 24564523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploiting heterogeneous features to improve in silico prediction of peptide status - amyloidogenic or non-amyloidogenic.
    Nair SS; Subba Reddy NV; Hareesha KS
    BMC Bioinformatics; 2011; 12 Suppl 13(Suppl 13):S21. PubMed ID: 22373069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Approaches to Identification of Aggregation Sites and the Mechanism of Amyloid Growth.
    Dovidchenko NV; Galzitskaya OV
    Adv Exp Med Biol; 2015; 855():213-39. PubMed ID: 26149932
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intrinsically semi-disordered state and its role in induced folding and protein aggregation.
    Zhang T; Faraggi E; Li Z; Zhou Y
    Cell Biochem Biophys; 2013; 67(3):1193-205. PubMed ID: 23723000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins.
    Hamodrakas SJ; Liappa C; Iconomidou VA
    Int J Biol Macromol; 2007 Aug; 41(3):295-300. PubMed ID: 17477968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of the aggregation of an amyloidogenic sequence by flanking-disordered region in the intrinsically disordered antigen merozoite surface protein 2.
    Zhang W; Zhang J; MacRaild CA; Norton RS; Anders RF; Zhang X
    Eur Biophys J; 2019 Jan; 48(1):99-110. PubMed ID: 30443712
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alternative conformations of amyloidogenic proteins govern their behavior.
    Kelly JW
    Curr Opin Struct Biol; 1996 Feb; 6(1):11-7. PubMed ID: 8696966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A critical assessment of the role of helical intermediates in amyloid formation by natively unfolded proteins and polypeptides.
    Abedini A; Raleigh DP
    Protein Eng Des Sel; 2009 Aug; 22(8):453-9. PubMed ID: 19596696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning study of classifiers trained with biophysiochemical properties of amino acids to predict fibril forming Peptide motifs.
    Kumaran Nair SS; Subba Reddy NV; Hareesha KS
    Protein Pept Lett; 2012 Sep; 19(9):917-23. PubMed ID: 22486618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common attributes of native-state structures of proteins, disordered proteins, and amyloid.
    Hoang TX; Marsella L; Trovato A; Seno F; Banavar JR; Maritan A
    Proc Natl Acad Sci U S A; 2006 May; 103(18):6883-8. PubMed ID: 16624879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Meta-structure correlation in protein space unveils different selection rules for folded and intrinsically disordered proteins.
    Naranjo Y; Pons M; Konrat R
    Mol Biosyst; 2012 Jan; 8(1):411-6. PubMed ID: 22108787
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational preferences of non-polar amino acid residues: an additional factor in amyloid formation.
    Johansson J; Nerelius C; Willander H; Presto J
    Biochem Biophys Res Commun; 2010 Nov; 402(3):515-8. PubMed ID: 20971069
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the polypeptide environment next to amyloidogenic peptides on fibril formation.
    Damm S; Schwarz E
    Biol Chem; 2014 Jul; 395(7-8):699-709. PubMed ID: 25003381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.