These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 17196033)
21. The Associative Memory, Water Mediated, Structure and Energy Model (AWSEM)-Amylometer: Predicting Amyloid Propensity and Fibril Topology Using an Optimized Folding Landscape Model. Chen M; Schafer NP; Zheng W; Wolynes PG ACS Chem Neurosci; 2018 May; 9(5):1027-1039. PubMed ID: 29241326 [TBL] [Abstract][Full Text] [Related]
22. Synergistic Amyloid Switch Triggered by Early Heterotypic Oligomerization of Intrinsically Disordered α-Synuclein and Tau. Bhasne K; Sebastian S; Jain N; Mukhopadhyay S J Mol Biol; 2018 Aug; 430(16):2508-2520. PubMed ID: 29704492 [TBL] [Abstract][Full Text] [Related]
23. Transient disorder along pathways to amyloid. Morgan GJ Biophys Chem; 2022 Feb; 281():106711. PubMed ID: 34839162 [TBL] [Abstract][Full Text] [Related]
24. The characterization and comparison of amyloidogenic segments and non-amyloidogenic segments shed light on amyloid formation. Chen S; Gao S; Cheng D; Huang J Biochem Biophys Res Commun; 2014 May; 447(2):255-62. PubMed ID: 24704202 [TBL] [Abstract][Full Text] [Related]
25. Tuning the conformational properties of the prion peptide. Ho CC; Lee LY; Huang KT; Lin CC; Ku MY; Yang CC; Chan SI; Hsu RL; Chen RP Proteins; 2009 Jul; 76(1):213-25. PubMed ID: 19137620 [TBL] [Abstract][Full Text] [Related]
26. The acid-mediated denaturation pathway of transthyretin yields a conformational intermediate that can self-assemble into amyloid. Lai Z; Colón W; Kelly JW Biochemistry; 1996 May; 35(20):6470-82. PubMed ID: 8639594 [TBL] [Abstract][Full Text] [Related]
27. Computational study of the fibril organization of polyglutamine repeats reveals a common motif identified in beta-helices. Zanuy D; Gunasekaran K; Lesk AM; Nussinov R J Mol Biol; 2006 Apr; 358(1):330-45. PubMed ID: 16503338 [TBL] [Abstract][Full Text] [Related]
28. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784 [TBL] [Abstract][Full Text] [Related]
29. Evaluation of Aggregation and Fibril Formation Propensity of Peptides Involved in Amyloid Diseases. Malavolta L; Chinarelli RL; Sobral DV; Nakaie CR Protein Pept Lett; 2018 Feb; 24(12):1141-1147. PubMed ID: 29086671 [TBL] [Abstract][Full Text] [Related]
30. Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Zhang Z; Chen H; Lai L Bioinformatics; 2007 Sep; 23(17):2218-25. PubMed ID: 17599928 [TBL] [Abstract][Full Text] [Related]
31. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. Hudson SA; Ecroyd H; Dehle FC; Musgrave IF; Carver JA J Mol Biol; 2009 Sep; 392(3):689-700. PubMed ID: 19616561 [TBL] [Abstract][Full Text] [Related]
32. Amyloidogenic determinants are usually not buried. Frousios KK; Iconomidou VA; Karletidi CM; Hamodrakas SJ BMC Struct Biol; 2009 Jul; 9():44. PubMed ID: 19589171 [TBL] [Abstract][Full Text] [Related]
33. Sequence determinants of amyloid fibril formation. López de la Paz M; Serrano L Proc Natl Acad Sci U S A; 2004 Jan; 101(1):87-92. PubMed ID: 14691246 [TBL] [Abstract][Full Text] [Related]
34. An Enantiomeric Fragment Pair (EFP) Approach for the Study of Cellular Uptake of Intrinsically Disordered Proteins. Foley AR; Raskatov JA Chembiochem; 2022 Aug; 23(15):e202200146. PubMed ID: 35417609 [TBL] [Abstract][Full Text] [Related]
35. Chain collapse of an amyloidogenic intrinsically disordered protein. Jain N; Bhattacharya M; Mukhopadhyay S Biophys J; 2011 Oct; 101(7):1720-9. PubMed ID: 21961598 [TBL] [Abstract][Full Text] [Related]
36. Characterizations of distinct amyloidogenic conformations of the Abeta (1-40) and (1-42) peptides. Lim KH; Collver HH; Le YT; Nagchowdhuri P; Kenney JM Biochem Biophys Res Commun; 2007 Feb; 353(2):443-9. PubMed ID: 17184733 [TBL] [Abstract][Full Text] [Related]
37. Exposure of Aggregation-Prone Segments is the Requirement for Amyloid Fibril Formation. Pramanik S; Ahmad B Curr Protein Pept Sci; 2018; 19(10):1024-1035. PubMed ID: 29779477 [TBL] [Abstract][Full Text] [Related]
38. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Bhasne K; Mukhopadhyay S Proteomics; 2018 Nov; 18(21-22):e1800059. PubMed ID: 30216674 [TBL] [Abstract][Full Text] [Related]
39. Determination of Regions Involved in Amyloid Fibril Formation for Aβ(1-40) Peptide. Surin AK; Grigorashvili EI; Suvorina MY; Selivanova OM; Galzitskaya OV Biochemistry (Mosc); 2016 Jul; 81(7):762-9. PubMed ID: 27449623 [TBL] [Abstract][Full Text] [Related]
40. The Classifying Autoencoder: Gaining Insight into Amyloid Assembly of Peptides and Proteins. Tro MJ; Charest N; Taitz Z; Shea JE; Bowers MT J Phys Chem B; 2019 Jun; 123(25):5256-5264. PubMed ID: 31150250 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]