BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17196078)

  • 1. Factors affecting magnetic retention of particles in the upper airways: an in vitro and ex vivo study.
    Ally J; Amirfazli A; Roa W
    J Aerosol Med; 2006; 19(4):491-509. PubMed ID: 17196078
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro and in vivo lung deposition of coated magnetic aerosol particles.
    Xie Y; Longest PW; Xu YH; Wang JP; Wiedmann TS
    J Pharm Sci; 2010 Nov; 99(11):4658-68. PubMed ID: 20845463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dose-dependent effects of submicrometer sulfuric acid aerosol on particle clearance from ciliated human lung airways.
    Leikauf GD; Spektor DM; Albert RE; Lippmann M
    Am Ind Hyg Assoc J; 1984 May; 45(5):285-92. PubMed ID: 6741776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic drug targeting through a realistic model of human tracheobronchial airways using computational fluid and particle dynamics.
    Pourmehran O; Gorji TB; Gorji-Bandpy M
    Biomech Model Mechanobiol; 2016 Oct; 15(5):1355-74. PubMed ID: 26886215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the laryngeal jet on nano- and microparticle transport and deposition in an approximate model of the upper tracheobronchial airways.
    Xi J; Longest PW; Martonen TB
    J Appl Physiol (1985); 2008 Jun; 104(6):1761-77. PubMed ID: 18388247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deposition and clearance of 2 micron particles in the tracheobronchial tree of normal subjects--smokers and nonsmokers.
    Lourenço RV; Klimek MF; Borowski CJ
    J Clin Invest; 1971 Jul; 50(7):1411-20. PubMed ID: 5090057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Possibilities of using ferromagnetic materials for targeted drug transport].
    Papisov MI; Samokhin GP; Smirnov MD; Torcholin VP; Smirnov VN
    Biull Eksp Biol Med; 1984 Sep; 98(9):372-4. PubMed ID: 6207870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retention of Teflon particles in hamster lungs: a stereological study.
    Geiser M; Gerber P; Maye I; Im Hof V; Gehr P
    J Aerosol Med; 2000; 13(1):43-55. PubMed ID: 10947323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of regional and local deposition of inhaled aerosol drugs in the respiratory system by computational fluid and particle dynamics methods.
    Farkas A; Balásházy I; Szocs K
    J Aerosol Med; 2006; 19(3):329-43. PubMed ID: 17034308
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional computational fluid dynamics simulations of particle deposition in the tracheobronchial tree.
    Isaacs KK; Schlesinger RB; Martonen TB
    J Aerosol Med; 2006; 19(3):344-52. PubMed ID: 17034309
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of a drift flux model for simulating submicrometer aerosol dynamics in human upper tracheobronchial airways.
    Xi J; Longest PW
    Ann Biomed Eng; 2008 Oct; 36(10):1714-34. PubMed ID: 18712605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantification of particle deposition in asymmetrical tracheobronchial model geometry.
    Farkas A; Balásházy I
    Comput Biol Med; 2008 Apr; 38(4):508-18. PubMed ID: 18336809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transport and fate of inhaled particles after deposition onto the airway surface liquid: A 3D numerical study.
    M Vanaki S; Holmes D; Suara K; Jayathilake PG; Brown R
    Comput Biol Med; 2020 Feb; 117():103595. PubMed ID: 32072962
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhalation of high concentrations of low toxicity dusts in rats results in impaired pulmonary clearance mechanisms and persistent inflammation.
    Warheit DB; Hansen JF; Yuen IS; Kelly DP; Snajdr SI; Hartsky MA
    Toxicol Appl Pharmacol; 1997 Jul; 145(1):10-22. PubMed ID: 9221819
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aerosol particle impaction in the conducting airways.
    Agnew JE; Pavia D; Clarke SW
    Phys Med Biol; 1984 Jul; 29(7):767-77. PubMed ID: 6473510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Particle retention in the intrapulmonary conducting airways in hamsters].
    Im Hof V; Geiser M; Schürch S; Gehr P
    Schweiz Med Wochenschr; 1990 Oct; 120(41):1497-503. PubMed ID: 2237337
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of magnetic interactions between clusters on particle orientational characteristics and viscosity of a colloidal dispersion composed of ferromagnetic spherocylinder particles: analysis by means of mean field approximation for a simple shear flow.
    Satoh A
    J Colloid Interface Sci; 2005 Sep; 289(1):276-85. PubMed ID: 16009234
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional model of tracheobronchial particle distribution during mucociliary clearance in the human respiratory tract.
    Sturm R
    Z Med Phys; 2013 May; 23(2):111-9. PubMed ID: 23477913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detailed mathematical description of the geometry of airway bifurcations.
    Hegedus CJ; Balásházy I; Farkas A
    Respir Physiol Neurobiol; 2004 Jul; 141(1):99-114. PubMed ID: 15234679
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.